New! Sign up for our free email newsletter.
Science News
from research organizations

Collective memory discovered in bacteria

Date:
March 7, 2016
Source:
EAWAG: Swiss Federal Institute of Aquatic Science and Technology
Summary:
Individual bacterial cells have short memories. But groups of bacteria can develop a collective memory that can increase their tolerance to stress. This has been demonstrated experimentally for the first time.
Share:
FULL STORY

Individual bacterial cells have short memories. But groups of bacteria can develop a collective memory that can increase their tolerance to stress. This has been demonstrated experimentally for the first time in a study by Eawag and ETH Zurich scientists published in PNAS.

Bacteria exposed to a moderate concentration of salt survive subsequent exposure to a higher concentration better than if there is no warning event. But in individual cells this effect is short-lived: after just 30 minutes, the survival rate no longer depends on the exposure history. Now two Eawag/ETH Zurich microbiologists, Roland Mathis and Martin Ackermann, have reported a new discovery made under the microscope with Caulobacter crescentus, a bacterium ubiquitous in freshwater and seawater.

When an entire population is observed, rather than individual cells, the bacteria appear to develop a kind of collective memory. In populations exposed to a warning event, survival rates upon a second exposure two hours after the warning are higher than in populations not previously exposed. Using computational modelling, the scientists explained this phenomenon in terms of a combination of two factors. Firstly, salt stress causes a delay in cell division, leading to synchronization of cell cycles; secondly, survival probability depends on the individual bacterial cell's position in the cell cycle at the time of the second exposure. As a result of the cell cycle synchronization, the sensitivity of the population changes over time. Previously exposed populations may be more tolerant to future stress events, but they may sometimes even be more sensitive than populations with no previous exposure.

Martin Ackermann comments: "If we understand this collective effect, it may improve our ability to control bacterial populations." The findings are relevant, for example, to our understanding of how pathogens can resist antibiotics, or how the performance of bacterial cultures in industrial processes or wastewater treatment plants can be maintained under dynamic conditions. After all, bacteria play a crucial role in almost all bio- and geochemical processes. From a human perspective, depending on the particular process, they are either beneficial -- e.g. if they break down pollutants or convert nutrients into energy -- or harmful, especially if they cause diseases. For the researchers, says Mathis, another important conclusion can be drawn: "If you want to understand the behaviour and fate of microbial populations, it's sometimes necessary to analyse every single cell."


Story Source:

Materials provided by EAWAG: Swiss Federal Institute of Aquatic Science and Technology. Note: Content may be edited for style and length.


Journal Reference:

  1. Roland Mathis, Martin Ackermann. Response of single bacterial cells to stress gives rise to complex history dependence at the population level. PNAS, March 7, 2016 DOI: 10.1073/pnas.1511509113

Cite This Page:

EAWAG: Swiss Federal Institute of Aquatic Science and Technology. "Collective memory discovered in bacteria." ScienceDaily. ScienceDaily, 7 March 2016. <www.sciencedaily.com/releases/2016/03/160307153047.htm>.
EAWAG: Swiss Federal Institute of Aquatic Science and Technology. (2016, March 7). Collective memory discovered in bacteria. ScienceDaily. Retrieved April 25, 2024 from www.sciencedaily.com/releases/2016/03/160307153047.htm
EAWAG: Swiss Federal Institute of Aquatic Science and Technology. "Collective memory discovered in bacteria." ScienceDaily. www.sciencedaily.com/releases/2016/03/160307153047.htm (accessed April 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES