New! Sign up for our free email newsletter.
Science News
from research organizations

Groundwater discharge to upper Colorado River Basin varies in response to drought

Assessing age of groundwater to determine resource availability

Date:
July 20, 2016
Source:
US Geological Survey
Summary:
Groundwater discharge that flows into the Upper Colorado River Basin varies in response to drought, which is likely due to aquifer systems that contain relatively young groundwater, according to a new study.
Share:
FULL STORY

Groundwater discharge that flows into the Upper Colorado River Basin varies in response to drought, which is likely due to aquifer systems that contain relatively young groundwater, according to a new U.S. Geological Survey study published in Hydrogeology Journal.

The Colorado River and its tributaries provide water to more than 40 million people in seven states, irrigate more than 5.5 million acres of land, and support hydropower facilities. More than half of the total streamflow in the UCRB originates from groundwater. Reductions in groundwater recharge associated with climate variability or increased water demand will likely reduce groundwater discharge to streams.

This is the first study that examines the short-term response of groundwater systems to climate stresses at a regional scale by assessing groundwater age. USGS scientists determined the age of groundwater by sampling the water flowing from nineteen springs in the UCRB. Age-tracing techniques can assess how long it takes groundwater to travel from the time it enters the aquifer system as precipitation to when the groundwater exits to springs and streams. Scientists compared eight of the springs with historical discharge and precipitation records with the groundwater age to better understand how aquifers have responded to drought. These findings helped scientists understand the variability and timing of groundwater discharge associated with drought.

"About half of the springs analyzed in the Upper Colorado River Basin contained young groundwater, which was surprising," said USGS scientist and lead author of the study John Solder. "These findings suggest that shallow aquifers, which are more responsive to drought than deeper systems, may be significant contributors to streamflow in the region."

Results show that if springs contain mostly older water, groundwater discharge is less variable over time and takes longer to respond to drought conditions. Springs that contain predominately young water, around 80 years old or less, are more likely to vary seasonally and respond rapidly to drought conditions. These results indicate that young groundwater resources are responsive to short-term climate variability.

"Sampling 19 springs in a very large basin is just the start, and further studies are needed to better understand the groundwater resources of this specific region," said Solder. "Determining groundwater age has promise in predicting how these systems will respond in the future and allows us to assess resource vulnerability where no historical records are available."


Story Source:

Materials provided by US Geological Survey. Note: Content may be edited for style and length.


Journal Reference:

  1. John E. Solder, Bernard J. Stolp, Victor M. Heilweil, David D. Susong. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: a tool for assessing groundwater discharge vulnerability. Hydrogeology Journal, 2016; DOI: 10.1007/s10040-016-1440-9

Cite This Page:

US Geological Survey. "Groundwater discharge to upper Colorado River Basin varies in response to drought." ScienceDaily. ScienceDaily, 20 July 2016. <www.sciencedaily.com/releases/2016/07/160720164828.htm>.
US Geological Survey. (2016, July 20). Groundwater discharge to upper Colorado River Basin varies in response to drought. ScienceDaily. Retrieved March 18, 2024 from www.sciencedaily.com/releases/2016/07/160720164828.htm
US Geological Survey. "Groundwater discharge to upper Colorado River Basin varies in response to drought." ScienceDaily. www.sciencedaily.com/releases/2016/07/160720164828.htm (accessed March 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES