Science News
from research organizations

Illuminating the secret of glow-in-the-dark mushrooms

Mechanism and color modulation of fungal bioluminescence

Date:
April 26, 2017
Source:
American Association for the Advancement of Science
Summary:
Scientists now understand what makes bioluminescent mushrooms glow, which may pave the way to new possibilities for harnessing fungal bioluminescence in analytical and imaging technologies. Bioluminescence is a highly conserved phenomenon that exists in a wide range of organisms; there are roughly 80 different known species of bioluminescent fungi alone scattered across the globe.
Share:
FULL STORY

This artistic conception summarizes one main finding from the present paper. Although all bioluminescent fungi emit green light (the true mushroom is the green one), the fungal luciferase can use different substrates leading to changes in intensity and color of emission.
Credit: Cassius V. Stevani/IQ-USP, Brazil

Scientists now understand what makes bioluminescent mushrooms glow, which may pave the way to new possibilities for harnessing fungal bioluminescence in analytical and imaging technologies. Bioluminescence is a highly conserved phenomenon that exists in a wide range of organisms; there are roughly 80 different known species of bioluminescent fungi alone scattered across the globe.

In most cases, light emission from living organisms occurs when a molecule called luciferin and its enzyme partner, luciferase, mix together with energy and atmospheric oxygen, triggering a chemical reaction that produces a very "excited" oxyluciferin, which releases light energy in order to "calm down" to its ground state.

The luciferin-luciferase pathway has been well-characterized in bioluminescent insects, bacteria and some marine animals -- but not in fungi.

Here, Zinaida Kaskova and her team were able to elucidate the molecular components involved in the fungal luciferin-luciferase pathway, leading to the discovery of the fungal equivalent of oxyluciferin by analyzing extracts of Neonothopanus gardneri (a fluorescent mushroom native to Brazil), and Neonothopanus nambi (a poisonous mushroom found in the rainforests of southern Vietnam).

The authors suggest that fungal luciferase may be "promiscuous," potentially able to interact with multiple derivatives of fungal luciferin, leading to changes in intensity and color of emission.


Story Source:

Materials provided by American Association for the Advancement of Science. Note: Content may be edited for style and length.


Journal Reference:

  1. Ilia V. Yampolsky et al. Mechanism and color modulation of fungal bioluminescence. Science Advances, April 2017 DOI: 10.1126/sciadv.1602847

Cite This Page:

American Association for the Advancement of Science. "Illuminating the secret of glow-in-the-dark mushrooms: Mechanism and color modulation of fungal bioluminescence." ScienceDaily. ScienceDaily, 26 April 2017. <www.sciencedaily.com/releases/2017/04/170426142022.htm>.
American Association for the Advancement of Science. (2017, April 26). Illuminating the secret of glow-in-the-dark mushrooms: Mechanism and color modulation of fungal bioluminescence. ScienceDaily. Retrieved May 26, 2017 from www.sciencedaily.com/releases/2017/04/170426142022.htm
American Association for the Advancement of Science. "Illuminating the secret of glow-in-the-dark mushrooms: Mechanism and color modulation of fungal bioluminescence." ScienceDaily. www.sciencedaily.com/releases/2017/04/170426142022.htm (accessed May 26, 2017).

RELATED STORIES