New! Sign up for our free email newsletter.
Science News
from research organizations

The toxic relationship between ALS and frontotemporal dementia

Date:
February 5, 2018
Source:
University of Southern California - Health Sciences
Summary:
ALS and frontotemporal dementia (FTD) are two neurodegenerative diseases with a toxic relationship, according to a new study. The study describes how a mutation in a gene, called C9ORF72, leads to toxicity in nerve cells -- causing 10 percent of all cases of ALS, and an additional 10 percent of FTD.
Share:
FULL STORY

ALS and frontotemporal dementia (FTD) are two neurodegenerative diseases with a toxic relationship, according to a new USC Stem Cell study published in Nature Medicine.

In the study, Yingxiao TK Shi and Shaoyu Sebastian Lin in the laboratory of Justin Ichida describe how a mutation in a gene, called C9ORF72, leads to toxicity in nerve cells -- causing 10 percent of all cases of ALS, and an additional 10 percent of FTD.

To understand how this happens, the researchers extracted blood from ALS patients carrying the C9ORF72 mutation, and reprogrammed these blood cells into the motor nerve cells that degenerate and die in the disease.

They also extracted blood from healthy patients, reprogrammed these blood cells into motor nerve cells, and used gene editing to delete the C9ORF72 gene.

Whether patient-derived or gene-edited, all motor nerve cells with the mutation had reduced amounts of the protein normally made by the C9ORF72 gene. Furthermore, by adding supplemental C9ORF72 protein, the researchers could stop the motor nerve cells from degenerating.

Through a series of experiments, the researchers revealed that the motor nerve cells use C9ORF72 protein to build lysosomes -- which are cellular compartments used to engulf and break down toxic proteins and other garbage.

Without enough lysosomes, the cells accumulate two key types of garbage. The first type is a large, toxic protein produced by the mutated C9ORF72 gene itself. The second type is an excessive number of receptors, or molecules that receive signals from a neurotransmitter known as glutamate. These receptors respond to glutamate by causing the motor nerve cell to activate. Too much activation can kill a motor nerve cell -- a phenomenon known as "excitotoxicity."

Guided by these discoveries, the Ichida Lab is now using patient-derived motor nerve cells to test thousands of potential drugs -- with a focus on those that affect lysosomes.

"By understanding the role of lysosomes in ALS and FTD, we can better target our search for new drugs or therapies to treat these devastating diseases," said Ichida, an assistant professor of stem cell biology and regenerative medicine at USC, and a New York Stem Cell Foundation-Robertson Investigator.


Story Source:

Materials provided by University of Southern California - Health Sciences. Note: Content may be edited for style and length.


Journal Reference:

  1. Yingxiao Shi, Shaoyu Lin, Kim A Staats, Yichen Li, Wen-Hsuan Chang, Shu-Ting Hung, Eric Hendricks, Gabriel R Linares, Yaoming Wang, Esther Y Son, Xinmei Wen, Kassandra Kisler, Brent Wilkinson, Louise Menendez, Tohru Sugawara, Phillip Woolwine, Mickey Huang, Michael J Cowan, Brandon Ge, Nicole Koutsodendris, Kaitlin P Sandor, Jacob Komberg, Vamshidhar R Vangoor, Ketharini Senthilkumar, Valerie Hennes, Carina Seah, Amy R Nelson, Tze-Yuan Cheng, Shih-Jong J Lee, Paul R August, Jason A Chen, Nicholas Wisniewski, Victor Hanson-Smith, T Grant Belgard, Alice Zhang, Marcelo Coba, Chris Grunseich, Michael E Ward, Leonard H van den Berg, R Jeroen Pasterkamp, Davide Trotti, Berislav V Zlokovic, Justin K Ichida. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nature Medicine, 2018; DOI: 10.1038/nm.4490

Cite This Page:

University of Southern California - Health Sciences. "The toxic relationship between ALS and frontotemporal dementia." ScienceDaily. ScienceDaily, 5 February 2018. <www.sciencedaily.com/releases/2018/02/180205113100.htm>.
University of Southern California - Health Sciences. (2018, February 5). The toxic relationship between ALS and frontotemporal dementia. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2018/02/180205113100.htm
University of Southern California - Health Sciences. "The toxic relationship between ALS and frontotemporal dementia." ScienceDaily. www.sciencedaily.com/releases/2018/02/180205113100.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES