New! Sign up for our free email newsletter.
Science News
from research organizations

New approach to stop transmission of malaria from humans to mosquitoes

Date:
February 8, 2018
Source:
Radboud University Nijmegen
Summary:
Some people develop an immune response following a malaria infection that stops them from infecting other mosquitoes. The antibodies that these people produce are sucked up by the mosquito and destroy the malaria parasite in the mosquito's stomach. Researchers have discovered that 1 in 25 malaria patients prevent the disease from spreading in this way. They also unraveled the defense proteins responsible, and these could be used to make a vaccine.
Share:
FULL STORY

Malaria is a disease that spreads incredibly efficiently. The antimalarial medicines that are currently used cannot do much to stop this, because the parasites remain in the patient's blood for a long time after treatment. This means that other mosquitoes can be infected with the parasite if they bite the patient. The male and female parasites are fertilized in the mosquito's stomach, the offspring are transferred back to humans when they are bitten by a mosquito, and the cycle starts again. In this way, just one malaria patient can cause more than 100 new malaria infections. In the fight against malaria, it is therefore very important to make sure that people are not able to infect other mosquitoes.

Altruistic immunity

People who have been infected with malaria produce antibodies. These antibodies can provide protection from further infection, but they can also prevent the spread of malaria as the antibodies destroy the parasites in the mosquito's stomach, or prevent fertilization. In that case, it is not the patient who benefits from the antibodies that he or she produces, but other people who are bitten by the mosquito. This is therefore an interesting form of altruistic immunity.

Malaria researcher Teun Bousema at Radboud university medical center and his colleagues at London School of Hygiene & Tropical Medicine (LSHTM), have discovered that 1 in 25 malaria patients are able to stop malaria spreading in this way. Amongst missionaries who had been infected with malaria dozens of times during their missionary work, immunity was even more common. Bousema: "This is the first time that we have been able to produce direct evidence that human antibodies against malaria parasite proteins are able to prevent the spread of malaria." The results will be published in Nature Communications on February 8th.

Vaccine to halt spread

Research into whether people can stop the spread of malaria is incredibly labor-intensive. For each patient, dozens of mosquitoes need to be investigated to see whether they have been infected after sucking up the blood of the malaria patient. Until recently, all these mosquitoes needed to be dissected. Luckily, however, this problem has now been solved. Bousema: "We have developed a malaria parasite that expresses a firefly gene, allowing us to see just by looking at the mosquito whether or not it has been infected." This has sped up the research considerably.

PhD student Will Stone studied people's immune response to over 300 malaria proteins. Stone: "We saw that our test subjects produced antibodies that are able to slow the spread of malaria in response to 45 of these proteins. People with these antibodies were ten times less likely to infect mosquitoes." Stone will defend his thesis about this research on February 22nd at Radboud university medical center and will continue his research at LSHTM. Bousema: "This research enables us to better understand which patients prevent the spread of malaria. We are now looking at whether it is possible to develop a malaria vaccine using some of these proteins. A vaccine that prevents the spread of malaria would help reduce the disease burden of malaria worldwide."


Story Source:

Materials provided by Radboud University Nijmegen. Note: Content may be edited for style and length.


Journal Reference:

  1. Will J. R. Stone, Joseph J. Campo, André Lin Ouédraogo, Lisette Meerstein-Kessel, Isabelle Morlais, Dari Da, Anna Cohuet, Sandrine Nsango, Colin J. Sutherland, Marga van de Vegte-Bolmer, Rianne Siebelink-Stoter, Geert-Jan van Gemert, Wouter Graumans, Kjerstin Lanke, Adam D. Shandling, Jozelyn V. Pablo, Andy A. Teng, Sophie Jones, Roos M. de Jong, Amanda Fabra-García, John Bradley, Will Roeffen, Edwin Lasonder, Giuliana Gremo, Evelin Schwarzer, Chris J. Janse, Susheel K. Singh, Michael Theisen, Phil Felgner, Matthias Marti, Chris Drakeley, Robert Sauerwein, Teun Bousema, Matthijs M. Jore. Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nature Communications, 2018; 9 (1) DOI: 10.1038/s41467-017-02646-2

Cite This Page:

Radboud University Nijmegen. "New approach to stop transmission of malaria from humans to mosquitoes." ScienceDaily. ScienceDaily, 8 February 2018. <www.sciencedaily.com/releases/2018/02/180208084804.htm>.
Radboud University Nijmegen. (2018, February 8). New approach to stop transmission of malaria from humans to mosquitoes. ScienceDaily. Retrieved March 18, 2024 from www.sciencedaily.com/releases/2018/02/180208084804.htm
Radboud University Nijmegen. "New approach to stop transmission of malaria from humans to mosquitoes." ScienceDaily. www.sciencedaily.com/releases/2018/02/180208084804.htm (accessed March 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES