New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Automobile safety

Automobile safety is the study and practice of design, construction, equipment and regulation to minimize the occurrence and consequences of automobile accidents. Road traffic safety more broadly includes roadway design. One of the first formal academic studies into improving vehicle safety was by Cornell Aeronautical Labs of Buffalo, New York.

The main conclusion of their extensive report is the crucial importance of seat belts and padded dashboards. However, the primary vector of traffic-related deaths and injuries is the disproportionate mass and velocity of an automobile compared to that of the predominant victim, the pedestrian. In the United States a pedestrian is injured by an automobile every 8 minutes, and are 1.5 times more likely than a vehicle's occupants to be killed in an automobile crash per outing.

Improvements in roadway and automobile designs have steadily reduced injury and death rates in all first world countries. Nevertheless, auto collisions are the leading cause of injury-related deaths, an estimated total of 1.2 million in 2004, or 25% of the total from all causes. Of those killed by autos, nearly two-thirds are pedestrians. Risk compensation theory has been used in arguments against safety devices, regulations and modifications of vehicles despite the efficacy of saving lives.

Related Stories
 


Matter & Energy News

November 6, 2025

Researchers are exploring MXenes, 2D materials that could transform air into ammonia for cleaner fertilizers and fuels. Their atomic structures can be tuned to optimize performance, making them promising alternatives to expensive ...
A new copper-magnesium-iron catalyst transforms CO2 into CO at low temperatures with record-breaking efficiency and stability. The discovery paves the way for affordable, scalable production of carbon-neutral synthetic ...
Engineers at the University of Delaware have uncovered a way to bridge magnetism and electricity through magnons—tiny waves that carry information without electrical current. These magnetic waves can generate measurable electric signals within ...
Researchers at Maynooth University have achieved a forensic milestone by revealing fingerprints on fired bullet casings using a safe electrochemical process. The method uses mild voltage and ...
Scientists have achieved a breakthrough in light manipulation by using topological insulators to generate both even and odd terahertz frequencies through high-order harmonic generation (HHG). By embedding these exotic materials into nanostructured ...
Cambridge researchers have engineered a solar-powered “artificial leaf” that mimics photosynthesis to make valuable chemicals sustainably. Their biohybrid device combines organic semiconductors and enzymes to convert CO₂ and sunlight into ...
From mini-brains to spider-inspired gloves and wolf apple coatings, scientists are turning eerie-sounding experiments into real innovations that could revolutionize health and sustainability. Lab-grown brain organoids may replace animal testing, ...
Researchers have made germanium superconducting for the first time, a feat that could transform computing and quantum technologies. Using molecular beam epitaxy to embed gallium atoms precisely, the team stabilized the crystal structure to carry ...
Tohoku University researchers have found a way to make quantum sensors more sensitive by connecting superconducting qubits in optimized network patterns. These networks amplify faint signals possibly left by dark matter. The approach outperformed ...
A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
A team of researchers has designed a theoretical model for a topological quantum battery capable of long-distance energy transfer and immunity to dissipation. By exploiting topological properties in photonic waveguides, they showed that energy loss ...

Latest Headlines

updated 12:56 pm ET