New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Schrödinger's cat

Schrödinger's cat is a seemingly paradoxical thought experiment devised by Erwin Schrödinger that attempts to illustrate the incompleteness of an early interpretation of quantum mechanics when going from subatomic to macroscopic systems. Schrödinger proposed his "cat" after debates with Albert Einstein over the Copenhagen interpretation, which Schrödinger defended, stating in essence that if a scenario existed where a cat could be so isolated from external interference (decoherence), the state of the cat can only be known as a superposition (combination) of possible rest states (eigenstates), because finding out (measuring the state) cannot be done without the observer interfering with the experiment — the measurement system (the observer) is entangled with the experiment.

The thought experiment serves to illustrate the strangeness of quantum mechanics and the mathematics necessary to describe quantum states. The idea of a particle existing in a superposition of possible states, while a fact of quantum mechanics, is a concept that does not scale to large systems (like cats), which are not indeterminably probabilistic in nature. Philosophically, these positions which emphasize either probability or determined outcomes are called (respectively) positivism and determinism.

Related Stories
 


Matter & Energy News

November 6, 2025

A new copper-magnesium-iron catalyst transforms CO2 into CO at low temperatures with record-breaking efficiency and stability. The discovery paves the way for affordable, scalable production of carbon-neutral synthetic ...
Engineers at the University of Delaware have uncovered a way to bridge magnetism and electricity through magnons—tiny waves that carry information without electrical current. These magnetic waves can generate measurable electric signals within ...
Researchers at Maynooth University have achieved a forensic milestone by revealing fingerprints on fired bullet casings using a safe electrochemical process. The method uses mild voltage and ...
Scientists have achieved a breakthrough in light manipulation by using topological insulators to generate both even and odd terahertz frequencies through high-order harmonic generation (HHG). By embedding these exotic materials into nanostructured ...
Cambridge researchers have engineered a solar-powered “artificial leaf” that mimics photosynthesis to make valuable chemicals sustainably. Their biohybrid device combines organic semiconductors and enzymes to convert CO₂ and sunlight into ...
From mini-brains to spider-inspired gloves and wolf apple coatings, scientists are turning eerie-sounding experiments into real innovations that could revolutionize health and sustainability. Lab-grown brain organoids may replace animal testing, ...
Researchers have made germanium superconducting for the first time, a feat that could transform computing and quantum technologies. Using molecular beam epitaxy to embed gallium atoms precisely, the team stabilized the crystal structure to carry ...
Tohoku University researchers have found a way to make quantum sensors more sensitive by connecting superconducting qubits in optimized network patterns. These networks amplify faint signals possibly left by dark matter. The approach outperformed ...
A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
A team of researchers has designed a theoretical model for a topological quantum battery capable of long-distance energy transfer and immunity to dissipation. By exploiting topological properties in photonic waveguides, they showed that energy loss ...
Scientists have developed a chromium-molybdenum-silicon alloy that withstands extreme heat while remaining ductile and oxidation-resistant. It could replace nickel-based superalloys, which are limited to about 1,100°C. The new material might make ...

Latest Headlines

updated 12:56 pm ET