New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Quantum entanglement

Quantum entanglement is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other, even though the individual objects may be spatially separated. This leads to correlations between observable physical properties of the systems. For example, it is possible to prepare two particles in a single quantum state such that when one is observed to be spin-up, the other one will always be observed to be spin-down and vice versa, this despite the fact that it is impossible to predict, according to quantum mechanics, which set of measurements will be observed. As a result, measurements performed on one system seem to be instantaneously influencing other systems entangled with it. But quantum entanglement does not enable the transmission of classical information faster than the speed of light.

Quantum entanglement has applications in the emerging technologies of quantum computing and quantum cryptography, and has been used to realize quantum teleportation experimentally. At the same time, it prompts some of the more philosophically oriented discussions concerning quantum theory. The correlations predicted by quantum mechanics, and observed in experiment, reject the principle of local realism, which is that information about the state of a system should only be mediated by interactions in its immediate surroundings. Different views of what is actually occurring in the process of quantum entanglement can be related to different interpretations of quantum mechanics.

Related Stories
 


Matter & Energy News

November 6, 2025

A new copper-magnesium-iron catalyst transforms CO2 into CO at low temperatures with record-breaking efficiency and stability. The discovery paves the way for affordable, scalable production of carbon-neutral synthetic ...
Engineers at the University of Delaware have uncovered a way to bridge magnetism and electricity through magnons—tiny waves that carry information without electrical current. These magnetic waves can generate measurable electric signals within ...
Researchers at Maynooth University have achieved a forensic milestone by revealing fingerprints on fired bullet casings using a safe electrochemical process. The method uses mild voltage and ...
Scientists have achieved a breakthrough in light manipulation by using topological insulators to generate both even and odd terahertz frequencies through high-order harmonic generation (HHG). By embedding these exotic materials into nanostructured ...
Cambridge researchers have engineered a solar-powered “artificial leaf” that mimics photosynthesis to make valuable chemicals sustainably. Their biohybrid device combines organic semiconductors and enzymes to convert CO₂ and sunlight into ...
From mini-brains to spider-inspired gloves and wolf apple coatings, scientists are turning eerie-sounding experiments into real innovations that could revolutionize health and sustainability. Lab-grown brain organoids may replace animal testing, ...
Researchers have made germanium superconducting for the first time, a feat that could transform computing and quantum technologies. Using molecular beam epitaxy to embed gallium atoms precisely, the team stabilized the crystal structure to carry ...
Tohoku University researchers have found a way to make quantum sensors more sensitive by connecting superconducting qubits in optimized network patterns. These networks amplify faint signals possibly left by dark matter. The approach outperformed ...
A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
A team of researchers has designed a theoretical model for a topological quantum battery capable of long-distance energy transfer and immunity to dissipation. By exploiting topological properties in photonic waveguides, they showed that energy loss ...
Scientists have developed a chromium-molybdenum-silicon alloy that withstands extreme heat while remaining ductile and oxidation-resistant. It could replace nickel-based superalloys, which are limited to about 1,100°C. The new material might make ...

Latest Headlines

updated 12:56 pm ET