Featured Research

from universities, journals, and other organizations

Chemical Reaction Believed To Support Underground Microbes Is Now Unlikely

Date:
August 18, 1998
Source:
National Science Foundation
Summary:
A critical chemical reaction previously thought to support microbial life deep below Earth's surface, and possibly on Mars, is in fact highly unlikely. The findings are reported in this week's issue of the journal Science by researchers funded by the National Science Foundation (NSF)'s Life in Extreme Environments (LeXeN) program and affiliated with the University of Massachusetts at Amherst (U. Mass.).

Findings Could Have Implications For Life On Mars And Other Planets

A critical chemical reaction previously thought to support microbial life deep below Earth's surface, and possibly on Mars, is in fact highly unlikely. The findings are reported in last week's issue of the journal Science by researchers funded by the National Science Foundation (NSF)'s Life in Extreme Environments (LeXeN) program and affiliated with the University of Massachusetts at Amherst (U. Mass.).

"This is an important step forward in our continuing efforts to understand the processes that sustain life deep beneath the earth's surface," says Mike Purdy, director of NSF's LeXeN program. "Negative findings like this are as important as positive ones in their importance to our understanding of the processes that determine the limits to life."

It had been generally accepted by scientists that hydrogen gas produced from rock could provide energy to support the growth of microorganisms living below Earth's surface, says U. Mass. microbiologist Derek Lovley. The hydrogen was thought to be produced when basalt, a common form of rock, reacts with water.

However, a research team led by Lovley has found that this concept is incorrect. Although hydrogen gas can be produced from basalt under artificial laboratory conditions, there is no hydrogen production under the conditions actually found in Earth's subsurface.

Lovley and his colleagues found that hydrogen could only be produced from the basalt when the rock was exposed to acidic conditions -- but environments containing basalt are never acidic.

"The idea that hydrogen produced from rocks could support large subsurface microbial ecosystems on Earth and possibly other planets was fascinating and was accepted by most microbiologists," Lovley says. "Unfortunately, this concept can not be supported by the available data."

From analyses of chemical and microbiological data, Lovley and collaborators Robert Anderson, U. Mass. graduate student, and Francis Chapelle, a hydrologist at the U.S. Geological Survey in South Carolina, suggest that the microorganisms are probably living on organic matter associated with the rock, not hydrogen. This is similar to the way that microorganisms grow in soil on Earth's surface.

The scientists emphasized that even though the microorganisms living deep in the Earth may make a living in a manner similar to that of surface microorganisms, they may have other unique characteristics. For example, Lovley's recent research has demonstrated that microorganisms from the earth's subsurface can be used to remove radioactive metals, as well as hydrocarbons from polluted groundwater.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Chemical Reaction Believed To Support Underground Microbes Is Now Unlikely." ScienceDaily. ScienceDaily, 18 August 1998. <www.sciencedaily.com/releases/1998/08/980818074030.htm>.
National Science Foundation. (1998, August 18). Chemical Reaction Believed To Support Underground Microbes Is Now Unlikely. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/1998/08/980818074030.htm
National Science Foundation. "Chemical Reaction Believed To Support Underground Microbes Is Now Unlikely." ScienceDaily. www.sciencedaily.com/releases/1998/08/980818074030.htm (accessed August 29, 2014).

Share This




More Earth & Climate News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins