Featured Research

from universities, journals, and other organizations

Why Is Africa So High?

Date:
September 17, 1998
Source:
Carnegie Institution
Summary:
Scientists at the Carnegie Institution report in this week's Nature magazine that forces deep within the Earth are responsible for the phenomenon known as the African Superswell. Carolina Lithgow-Bertelloni* and Paul Silver of Carnegie's Department of Terrestrial Magnetism write that a large, hot upwelling orginating from the core-mantle boundary causes the mantle above it to flow. This flow, they maintain, extends all the way to the base of the African plate, where it elevates the southern part of the continent.

Dynamic Topography And The African Superswell

Scientists at the Carnegie Institution report in this week's Nature magazine that forces deep within the Earth are responsible for the phenomenon known as the African Superswell. Carolina Lithgow-Bertelloni* and Paul Silver of Carnegie's Department of Terrestrial Magnetism write that a large, hot upwelling orginating from the core-mantle boundary causes the mantle above it to flow. This flow, they maintain, extends all the way to the base of the African plate, where it elevates the southern part of the continent. "Imagine a bubble in a vat of maple syrup," says Silver. "It causes the syrup to flow as it rises, and also raises the surface." This change in height is referred to as dynamic topography.

It has been known for many years that the southern African plateau is higher than traditional data would suggest. Southern Africa happens to consist of a craton, which is the oldest part of the African continent. Most other continents have one or more cratons, but they are no higher than 400 or 500 meters above sea level. Southern Africa, however, lies more than 1,000 meters (or 1 km) above average sea level. Most previous explanations for the anomalous elevation have focused on near-surface phenomena such as episodes of volcanic heating and/or lithospheric thinning. None of these processes, however, have been able to account for the elevation.

Lithgow-Bertelloni and Silver believe that the excess elevation is due to an active upwelling of hot mantle material in the lower mantle originating from the core-mantle boundary. They see evidence for this active upwelling in images from seismic tomography. Seismic tomography has persistently indicated the existence of a large, low-velocity seismic anomaly in the lower mantle directly below the African Plate. Low seismic velocities generally reflect hotter, and consequently lighter than normal material. Lithgow-Bertelloni and Silver suspected that the high elevation of Africa is the direct result of this lower-mantle feature. To test this hypothesis, they performed an "instantaneous flow" calculation, which predicts both the mantle flow that would develop from the buoyant, lower-mantle feature, and the resulting dynamic topography of the Earths surface. They found a pattern of surface topography that looked remarkably like southern Africa's actual topography, strongly suggesting a causal link.

Not only does this upwelling raise southern Africa, but the calculations by Lithgow-Bertelloni and Silver show that it is also capable of driving tectonic plates. For many years earth scientists have been debating the forces that drive the plates. It has been conventionally assumed that the driving forces arise directly or indirectly from the plates themselves, as they sink back into the mantle. This study, however, shows that this upwelling originating deep in the Earth's interior constitutes a significant driving force for several tectonic plates.

"This is an exciting result," says Lithgow-Bertelloni. "It clearly shows the link between the dynamics of the deep mantle and features on the surface of the Earth, and that one cannot be understood without the other."

The Department of Terrestrial Magnetism (DTM) is one of five research centers of the Carnegie Institution of Washington, a nonprofit organization devoted to basic research and education in the physical and biological sciences. DTM scientists, including seismologists, geochemists, planetary scientists, and astronomers, are led by Sean C. Solomon, the department's director. The president of the institution is the biologist Maxine F. Singer.

* Lithgow-Bertelloni is currently a faculty member at the University of Michigan, Ann Arbor. Previously, she was a postdoctoral fellow at DTM.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Why Is Africa So High?." ScienceDaily. ScienceDaily, 17 September 1998. <www.sciencedaily.com/releases/1998/09/980917080731.htm>.
Carnegie Institution. (1998, September 17). Why Is Africa So High?. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/1998/09/980917080731.htm
Carnegie Institution. "Why Is Africa So High?." ScienceDaily. www.sciencedaily.com/releases/1998/09/980917080731.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Washed-Up 'Alien Hairballs' Are Actually Algae

Washed-Up 'Alien Hairballs' Are Actually Algae

Newsy (Sep. 22, 2014) Green balls of algae washed up on Sydney, Australia's Dee Why Beach. Video provided by Newsy
Powered by NewsLook.com
Was The Biggest Climate March In History Underreported?

Was The Biggest Climate March In History Underreported?

Newsy (Sep. 22, 2014) The People's Climate March in New York City drew more than 300,000 people, possibly a record-breaking number. Was the march underreported? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins