Featured Research

from universities, journals, and other organizations

Earthquake Provides Proof That Earth's Innermost Core Is Solid

Date:
December 11, 1998
Source:
Northwestern University
Summary:
If Earth were a candy, there would be a nut inside that creamy filling. Confirming a long-held scientific notion, a Northwestern University seismologist and a colleague at the French Atomic Energy Commission have provided the first direct evidence that -- inside a liquid core -- the very center of the Earth is solid.

If Earth were a candy, there would be a nut inside that creamy filling.

Related Articles


Confirming a long-held scientific notion, a Northwestern University seismologist and a colleague at the French Atomic Energy Commission have provided the first direct evidence that -- inside a liquid core -- the very center of the Earth is solid.

The long sought finding, which had been hinted at but never proven, came from analysis of seismic waves generated by the June 1996 earthquake in Indonesia and recorded at a large-array seismic network spread across France. The finding will be presented Thursday at the American Geophysical Union meeting in San Francisco and will appear in the Dec. 15 issue of Earth and Planetary Science Letters.

For decades, seismologists have used seismic waves as a sort of probe of the Earth's insides. They look at how the waves created by an earthquake at the surface of the Earth reverberate through the interior before being detected on the other side.

"The general picture of the Earth at the turn of the last century was that it had a rocky mantle floating on a liquid core of molten iron," says Emile A. Okal, professor of geological sciences at Northwestern and an author of the new study. The fluidity of the iron explained the existence of the Earth's magnetic field, he said.

But geophysicists also assumed that at some great depth, the pressure would be so high that even at temperatures of thousands of degrees the iron would freeze solid. In the 1930s, seismologists did find a "discontinuity" in the velocity of waves propagated through the center of the Earth, suggesting some sort of stratification of the core.

The problem, for 60 years now, is that those waves never carried the signature of a solid.

"A solid has a very distinctive mechanical property, which is that it can sustain two different kinds of waves," Okal said. "It can transmit a wave that oscillates in the direction of travel, sort of a pulsing compression-and-relaxation, and it can transmit a wave that vibrates perpendicular to the direction of travel, like a guitar string."

A liquid can propagate only the first type of wave, which corresponds to a change of volume and pressure, as it propagates, he said. "The second type requires memory of a shape for its restoring force, and a liquid has no shape."

Only the first type of wave, characteristic of liquids, had ever been observed coming from the Earth's core.

Okal and his colleague in France, Yves Cansi, used an eight-station French seismic network to study the Indonesian earthquake, and for the first time detected the telltale second vibration.

"The 1996 Flores Sea earthquake, which was a big earthquake at about 600 kilometers depth, was perfect in geometry for recording in France," Okal said. "If you want to sample the deepest part of the Earth, you need a big, deep earthquake," he said. "And they are rare." A deep earthquake gives rise to cleaner signals, he said.

Improvements in instrumentation over the last 15 years were crucial to the new finding, Okal said, as were computer capabilities, developed in France, to extract signals from noise.

Okal's expectations for the significance of the finding are, well, down to earth.

"We look at the interior of the Earth because we would like to know what is below us," Okal said. "But this may turn out to be interesting to the field of materials science because it indicates that under tremendous pressures, iron is behaving in a different way," he said. "Understanding how the qualities of materials are affected under extremely high pressures -- millions of times the atmospheric pressure -- might be applicable for different materials at not-so-heavy pressures."

The research was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Earthquake Provides Proof That Earth's Innermost Core Is Solid." ScienceDaily. ScienceDaily, 11 December 1998. <www.sciencedaily.com/releases/1998/12/981211083655.htm>.
Northwestern University. (1998, December 11). Earthquake Provides Proof That Earth's Innermost Core Is Solid. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/1998/12/981211083655.htm
Northwestern University. "Earthquake Provides Proof That Earth's Innermost Core Is Solid." ScienceDaily. www.sciencedaily.com/releases/1998/12/981211083655.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Yellow-Spotted Turtles Rescued from Trafficking

Yellow-Spotted Turtles Rescued from Trafficking

Reuters - Light News Video Online (Nov. 24, 2014) — Hundreds of Amazon River turtles released into the wild in Peru. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins