Featured Research

from universities, journals, and other organizations

Duke Geologist Decries Using Engineering Models To Predict Natural Phenomena

Date:
January 27, 1999
Source:
Duke University
Summary:
Using mathematical models to predict natural processes -- such as how well a sandy beach can weather randomly occurring storm buffeting -- is a commonplace but wrongheaded engineering practice that can cause real harm, according to a Duke University geologist who studies such coastal dynamics.

ANAHEIM, CALIF. -- Using mathematical models to predict natural processes -- such as how well a sandy beach can weather randomly occurring storm buffeting -- is a commonplace but wrongheaded engineering practice that can cause real harm, according to a Duke University geologist who studies such coastal dynamics.

"Engineering models of Earth surface phenomena do not work, and I think it is very important that society recognizes this," said Orrin Pilkey, a professor of Earth and ocean science at Duke's Nicholas School of the Environment. "I think mathematical modeling in this sense is damaging our society."

Pilkey spoke in an interview before his talk on the same subject Monday at the annual meeting of the American Association for the Advancement of Science.

He is the outspoken director of Duke's Program for the Study of Developed Shorelines and the co-author of The Corps and the Shore (1996, Island Press), a book that criticizes the U.S. Army Corps of Engineers' use of predictive mathematical models such as "GENESIS" and "SBEACH"to model beaches.

Such models use mathematical equations to represent such factors as wave characteristics, the density and porosity of beach sand, the density of sea water and the beach's slope. The intended purpose is to predict how natural or artificial beaches will respond to various kinds of coastal engineering.

Some engineering models -- such as those assessing the performance of construction materials in a bridge or building -- are useful, Pilkey acknowledged. "Modeling steel and concrete is fine," he said. "But now engineers have stepped into natural systems and they want to model beaches. Well, they can't do that.

"In general, they can't model any natural systems with precision. But because beaches are so dynamic and because they can change so suddenly, it is very obvious and easy to see why modeling fails for them."

Pilkey focused on expensive "nourishment" projects where sand from another location is pumped or trucked in to embellish an eroding beach. Corps engineers use mathematical models to assure beach communities that these projects will have a definite "lifetime." But reality is quite different from these models, he argued.

"What happens to a beach depends on randomly occurring storms, and every storm is different," he said. "You have some big storms that don't do anything. Then the next big storm will do a tremendous amount of damage."

Beaches can behave chaotically, which -- according to the emerging guidelines of chaos theory -- "have a huge dependence upon initial conditions," added Pilkey, who said his "favorite initial condition" is a layer of shells that can cover some beaches.

"If you have a shell layer, the beach won't move until you are well into a storm and the energy gets really high," he said. "Whereas, with a beach that is less shelly, its sand will move with the waves from the beginning of a storm. So you have an entirely different response to a storm just because of a layer of shells."

Pilkey said such models also do not keep up with the pace of scientific discovery.

For instance, he said, coastal researchers learned only comparatively recently that "rocks underlying the shore face control the erosion rates of beaches. These models also don't take into account the strong bottom currents that we didn't know much about 20 years ago."

Pilkey stressed that he does not object to using "basic" scientific models to study nature, because those address the questions "how" or "why." By contrast, the engineering models he opposes "ask the questions "where," "how much" and "when," he added.

"For example, "When will that beach disappear that we just nourished?" he said. "Or, "How much sand will be needed to make it last for X numbers of years?"; and "Where is the shoreline going to be 25, 50 or 100 years from now?"

Pilkey proposes that what is called beach erosion is actually tied to a natural process linked to rising sea levels. He has attracted controversy by arguing that coastal engineering can exacerbate erosion and that some measures -- especially seawall construction -- can actually destroy a beach.

While he acknowledges that beach nourishment projects can work for a while, he contends that their predicted lifetimes are often wildly optimistic, forcing beachfront communities to find the money for yet more replacement sand.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Duke Geologist Decries Using Engineering Models To Predict Natural Phenomena." ScienceDaily. ScienceDaily, 27 January 1999. <www.sciencedaily.com/releases/1999/01/990127081231.htm>.
Duke University. (1999, January 27). Duke Geologist Decries Using Engineering Models To Predict Natural Phenomena. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/1999/01/990127081231.htm
Duke University. "Duke Geologist Decries Using Engineering Models To Predict Natural Phenomena." ScienceDaily. www.sciencedaily.com/releases/1999/01/990127081231.htm (accessed October 21, 2014).

Share This



More Earth & Climate News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins