Featured Research

from universities, journals, and other organizations

Brain Compound's Anti-Aggression Effects Appear To Reverse In Monogamous Male Rodents

Date:
October 26, 1999
Source:
Johns Hopkins University
Summary:
The latest results from a line of Johns Hopkins research on the role of nitric oxide in the brain show that the chemical, which dampens aggression in male mice, has the reverse impact in a monogamous species of rodent.

EMBARGOED FOR RELEASE ON TUESDAY, OCT. 26

Related Articles


The male prairie vole's interest in defending his pups, an oddity in male rodents, may come in part from his brain's production of a compound linked to aggressive behavior in mice, according to new results from researchers at The Johns Hopkins University.

Scientists found evidence suggesting that the male vole's brain chemistry more closely resembles nursing mouse females than it does his feckless male mouse counterparts, an intriguing possibility that could help researchers begin to tease apart some of the complex biochemical roots of mating-related behaviors.

"By focusing on these specialized behaviors, we're starting to pick up on some important similarities in the ways they may be triggered," says Stephen Gammie, a postdoctoral fellow in the Psychology Department at Hopkins. "When they and their pups are approached by a stranger, both the male vole and the female mouse with pups experience increased production of a compound called citrulline in the brain."

Citrulline is a byproduct of the reaction brain cells use to produce the messenger compound nitric oxide, which suggests that nitric oxide plays a role in turning on these forms of aggression.

Hopkins scientists began to investigate nitric oxide's relationship to aggressive behavior four years ago, when they found that a line of genetically engineered mice produced to study brain damage from stroke had suffered an unexpected side effect. The males among the mice were unusually aggressive, relentlessly attacking other males and ignoring female rejection of attempts to mate.

Researchers had given the mice a damaged form of the gene for a protein known as nitric oxide synthase, theoretically leaving the mice with little or no nitric oxide in their brains.

Earlier this year, researchers studied the effects of the modification on female mice. Instead of gaining increased aggressiveness like the males, the females lost their aggressive behavior in the one context where it normally showed up, when they were nursing pups and a strange male mouse came around, putting the pups in danger of an attack.

For the new study, scientists switched over to voles, which are also rodents and look like a stout mouse or rat, but are more closely related to lemmings and muskrats than to mice.

"Voles were interesting to us because, as in humans, the males are monogamous, and help take care of the pups they produce," says Gammie. "Also, while voles are relatively non-aggressive, previous research had shown that males experience a dramatic increase in aggression toward intruders after mating."

For the new study, Gammie and co-author Randy Nelson, a Hopkins professor of psychology and neuroscience, exposed mated and non-mated male voles and female voles with pups to intruders, and then examined the levels of citrulline in their brains.

They found consistently higher levels of citrulline in the mated males and females with pups, the animals that would aggressively confront a stranger. The increase was focused on an area of the brain known as the paraventricular nucleus.

"That area is located in the hypothalamus, a part of the brain where environmental stimuli are integrated with internal signals from the brain, and a response begins to be produced," Gammie says..

Researchers plan to see if they can suppress nitric oxide production in the voles with a drug. If so, they'll test to see if using this drug in mated male voles reduces their aggression levels. Scientists may also test the possibility of links between nitric oxide and the monogamous behavior of the voles.

Gammie and Nelson's research was funded by grants from the National Institutes of Health and the National Institute of Mental Health. It is being presented at the annual meeting of the Society for Neuroscience in Miami Beach.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Brain Compound's Anti-Aggression Effects Appear To Reverse In Monogamous Male Rodents." ScienceDaily. ScienceDaily, 26 October 1999. <www.sciencedaily.com/releases/1999/10/991022100223.htm>.
Johns Hopkins University. (1999, October 26). Brain Compound's Anti-Aggression Effects Appear To Reverse In Monogamous Male Rodents. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/1999/10/991022100223.htm
Johns Hopkins University. "Brain Compound's Anti-Aggression Effects Appear To Reverse In Monogamous Male Rodents." ScienceDaily. www.sciencedaily.com/releases/1999/10/991022100223.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins