Featured Research

from universities, journals, and other organizations

Cattails And Contamination: Marshy Stalks Hold DNA Clues On Pollution

Date:
October 26, 1999
Source:
University Of Cincinnati
Summary:
A team of researchers at the University of Cincinnati has detected significant differences in the genetic diversity of common cattails in areas heavily impacted by pollution, providing evidence that cattails might be an effective indicator of environmental stress.

Cincinnati -- A team of researchers at the University of Cincinnati has detected significant differences in the genetic diversity of common cattails in areas heavily impacted by pollution, providing evidence that cattails might be an effective indicator of environmental stress.

Related Articles


Cattails were selected for study because they have a wide geographic distribution, from the Arctic circle to the tropics, and thus could be used widely for stress monitoring.

The research team, led by biologist Steven Rogstad, and involving UC mathematician Stephan Pelikan, Oak Ridge postdoctoral researcher Brian Keane, and US EPA scientists M. Kate Smith and Greg Toth, sampled dozens of cattail populations along a 320 kilometer stretch from Louisville, Kentucky to Circleville, Ohio (south of Columbus).

In addition, five sites were sampled on the Wurtsmith Air Force Base in northeastern Michigan, because some of the sites were known to be contaminated with fuels, solvents, and other organic chemicals, while adjacent sites were unpolluted.

Leaf samples from the various sites were returned to UC labs and extracted for the DNA comparisons. The biologists focused on variable-number-tandem-repeat (VNTR) sequences, a type of DNA fingerprinting modified after similar techniques used with humans. By sampling a wide area in the Midwest and a site known to be polluted, the researchers hoped to get a better picture of VNTR genetic diversity in cattails and to determine if changes in genetic diversity could be an indicator of environmental stress.

The team found two surprises. First, previous studies indicated that, although cattails are extremely variable in morphology and ecological tolerance, protein (allozyme) analyses had shown an almost complete lack of genetic variation across North America. With the more powerful VNTR analyses, the researchers found more variation in 30 foot by 30 foot plots than previously identified across the entire continent. Although this variation was high enough to permit the identification of different intermingling clones within plots, the amount of variation was the lowest yet found for natural plant stands using DNA fingerprinting.

Second, Rogstad notes that "several previous studies with animals found that genetic diversity is often reduced with increasing levels of chemical pollution." The researchers were surprised to find that the cattails growing in the most polluted sites had the greatest genetic diversity in their VNTR sequences. Possible explanations for this increased diversity include increased mutation rates or higher mortality driving the establishment of a more diverse set of individuals at a site.

Rogstad's lab is continuing its work in this area and examining diversity in a number of common plants from dandelions to honeysuckles and wild raspberries. The work is supported by the Environmental Protection Agency.


Story Source:

The above story is based on materials provided by University Of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University Of Cincinnati. "Cattails And Contamination: Marshy Stalks Hold DNA Clues On Pollution." ScienceDaily. ScienceDaily, 26 October 1999. <www.sciencedaily.com/releases/1999/10/991026072738.htm>.
University Of Cincinnati. (1999, October 26). Cattails And Contamination: Marshy Stalks Hold DNA Clues On Pollution. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/1999/10/991026072738.htm
University Of Cincinnati. "Cattails And Contamination: Marshy Stalks Hold DNA Clues On Pollution." ScienceDaily. www.sciencedaily.com/releases/1999/10/991026072738.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins