Featured Research

from universities, journals, and other organizations

Microbes On Earth May Be Key To Identifying Life On Other Planets

Date:
May 2, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
Evidence of life in Martian meteorites or future rock samples from the Red Planet may be easier to identify thanks to microbes living in hot springs at Yellowstone National Park.

CHAMPAIGN, Ill. -- Evidence of life in Martian meteorites or future rock samples from the Red Planet may be easier to identify thanks to microbes living in hot springs at Yellowstone National Park.

"The existence of life itself can change the physical and chemical attributes in an environment of deposition," said Bruce Fouke, a geologist at the University of Illinois. "By studying the effects of microbial metabolism on the chemistry of the water and on the way minerals are deposited in Earth environments, we can better interpret samples from other planets for signs of life."

For example, various carbonate features -- including tiny, rod-shaped calcite crystals -- found in the Martian meteorite ALH84001 could have been formed by either organic or inorganic means. To help interpret whether such shapes are indicative of life, Fouke has established a systematic model for the deposition of travertine by actively flowing hot springs at Angel Terrace at Mammoth Hot Springs.

"Travertine is a crystalline form of calcite that forms where subsurface waters erupt, cool, de-gas and precipitate calcium-carbonate minerals with a variety of crystal morphologies and chemical compositions," Fouke said. "In this setting, we are examining the environmental feedback mechanisms that exist between water, microbes and the precipitation of travertine."

Mammoth Hot Springs, near the northern boundary of Yellowstone National Park, is one of the world's largest sites of travertine accumulation. The travertine deposits at Mammoth Hot Springs are approximately 8,000 years old, 73 meters thick and cover more than 4 square kilometers.

"Yellowstone is an ideal laboratory because of the high precipitation rates and the abundance of microbes," Fouke said. "By documenting where we find certain calcite shapes in the spring system, we can link those shapes with a particular water flow, chemistry and microbe. With that environmental context, we can start to decipher the geological record and to reconstruct ancient environments."

Geochemical evaluation of the spring water and underlying travertine has suggested that inorganic processes such as carbon dioxide de-gassing, temperature decreases and possibly evaporation are the primary environmental controls on travertine mineralogy, Fouke said. "So the environmental context could be the key to determining whether or not a particular feature is an entombed microbe."

On Earth, microbes also can be found trapped in fluid inclusions in ancient calcite crystals. Fouke is working with UI microbiologist Abigail Salyers to develop techniques to liberate the microbes and isolate, extract, amplify and sequence their DNA.

"The genetic analysis will provide additional information about the microbes' metabolism," he said. "We will incorporate this information into our depositional model to help link the presence of ancient life with suspect, calcium-carbonate depositional features and chemical compositions."

Fouke published his findings in the May issue of the Journal of Sedimentary Research. Funding was provided by NASA, the National Research Council and the UI Critical Research Initiative.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Microbes On Earth May Be Key To Identifying Life On Other Planets." ScienceDaily. ScienceDaily, 2 May 2000. <www.sciencedaily.com/releases/2000/05/000501235035.htm>.
University Of Illinois At Urbana-Champaign. (2000, May 2). Microbes On Earth May Be Key To Identifying Life On Other Planets. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2000/05/000501235035.htm
University Of Illinois At Urbana-Champaign. "Microbes On Earth May Be Key To Identifying Life On Other Planets." ScienceDaily. www.sciencedaily.com/releases/2000/05/000501235035.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins