Featured Research

from universities, journals, and other organizations

Sans Organism, Scientists Harvest A Trove Of DNA

Date:
September 8, 2000
Source:
University Of Wisconsin, Madison
Summary:
On an overcast spring day, Doreen Gillespie prepares for the hunt. Gathering a soil auger, a spoon and some tinfoil from a van, Gillespie strides over to an 8-foot-by-8-foot plot, her hunting ground, and prepares to gather a sample of soil that teems with unknown life.

MADISON - On an overcast spring day, Doreen Gillespie prepares for the hunt.

Related Articles


Gathering a soil auger, a spoon and some tinfoil from a van, Gillespie strides over to an 8-foot-by-8-foot plot, her hunting ground, and prepares to gather a sample of soil that teems with unknown life. If she's lucky, the dirt she so carefully collects will, in fact, be pay dirt -- soil that will yield a trove of genetic information new to science and that may result in a new antibiotic or other lifesaving medicine.

"The overall goal is to use unknown resources in the soil," explains Gillespie, a post-doctoral fellow at the University of Wisconsin-Madison. "The resources we are looking at are microorganisms."

Framed more narrowly, the resource Gillespie is tapping into is the microbes' DNA, genetic instructions for microbe-made chemicals - antibiotics, insecticides, anticancer drugs, antiparasitic agents, and others - that now can only be imagined.

These biochemical secrets are locked away in microorganisms - there may be thousands of different species of bacteria in a single plug of soil - and the majority, perhaps as much as 99 percent, scientists are unable to tame in the lab and, therefore, are largely unknown to science.

"If there are all these different kinds of bacteria, there must be all kinds of chemicals that they're making," says Jo Handelsman, a UW-Madison professor of plant pathology and a leader of a project aimed at creating vast libraries of new genetic information from the soil. Indeed, soil microbes, scientists know, live in close relationships with other organisms in the same niche, and they almost certainly depend on the chemicals they make for everything from defense to communication.

"We actually don't know much about soil microbes and the lives they live," says Handelsman.

The simple fact that most soil microbes cannot be cultured and studied in the laboratory has prompted Handelsman and colleagues Robert Goodman, also a UW-Madison professor of plant pathology, and Jon Clardy, a Cornell University professor of chemistry, to embark on a novel quest to harvest the hidden potential of soil microbes and the chemicals they make.

The promise of this genetic mother lode is great. The relatively few soil microbes that can be grown in the lab have already yielded a host of helpful products, from critical antibiotics and anticancer drugs to antifungal compounds and herbicides.

Moreover, the techniques being developed by the Wisconsin-Cornell team could potentially be extended to the other domains - insect gut, the deep ocean, fresh water lakes, hot springs - where microbes abound.

"More drugs come from soil organisms than from any other habitat on Earth," says Handelsman. "Soil will be the richest environment but, technically, it is also the hardest. If we can do this with soil, we think we can do it with material from any environment."

Last month, Handelsman, Goodman and Clardy published a paper in the journal Applied and Environmental Microbiology that describes the construction of the first libraries of genetic information gathered from pools of soil microbes. The team has also uncovered the first hint of a new antibiotic.

The libraries are created by taking sieved soil samples and exposing them to a freeze-thaw cycle that cracks open the bacteria and allows access to the microorganism's DNA, which is retrieved by precipitation of a solution. After further preparation, the DNA is cloned into a plasmid, a genetic vector that can insert itself into an E. coli bacterium, the microbiologist's lab rat. Once there, the new-found DNA can be probed and tested for hints of chemical properties that could be useful in the clinic, on the farm or in industry.

"Since there are so many different environments in the soil, the likelihood of finding different organisms and different chemistries is high," Goodman says. "The world is full of microorganisms that have learned, chemically, how to get along, how to communicate with, how to influence other animals. It might turn out that they're making chemical molecules that turn out to be useful to people."

Still, true success will probably only come from a combination of hard work and luck. Not only are there many, many organisms in the soil, but the amount of DNA collected is vast, and much of that is apparently useless. And a chemical activity, an antibiotic activity, for instance, requires many genes meaning that the piece of DNA responsible must be relatively large.

The mother lode, according to Gillespie and her colleagues, are chemicals that would have some pharmaceutical property such as an growth regulator, a chemical that might inhibit the growth of cancerous tumors, or an antibiotic to augment the world's shrinking supply of drugs to combat infection. But the risk, they argue, is balanced by a potential payoff of harvesting many new and useful chemicals from, literally, beneath our feet.

"It is relatively high risk," Gillespie says. "But I don't think there's any doubt something will come of it. It's just a matter of when and what."


Story Source:

The above story is based on materials provided by University Of Wisconsin, Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin, Madison. "Sans Organism, Scientists Harvest A Trove Of DNA." ScienceDaily. ScienceDaily, 8 September 2000. <www.sciencedaily.com/releases/2000/09/000904125843.htm>.
University Of Wisconsin, Madison. (2000, September 8). Sans Organism, Scientists Harvest A Trove Of DNA. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2000/09/000904125843.htm
University Of Wisconsin, Madison. "Sans Organism, Scientists Harvest A Trove Of DNA." ScienceDaily. www.sciencedaily.com/releases/2000/09/000904125843.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins