Featured Research

from universities, journals, and other organizations

Unified Theory Relates Microbial Metabolism To Lab And Field

Date:
November 24, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
The ability to describe the rates at which microbial populations metabolize in the natural environment has been limited by the lack of a general theory of microbial kinetics. Now, researchers at the University of Illinois have found an approach that holds significant promise for extending the results of laboratory experiments to better understand microbial metabolism in nature

CHAMPAIGN, Ill. — The ability to describe the rates at which microbial populations metabolize in the natural environment has been limited by the lack of a general theory of microbial kinetics. Now, researchers at the University of Illinois have found an approach that holds significant promise for extending the results of laboratory experiments to better understand microbial metabolism in nature.

"The growth of microbial populations can have profound affects on the chemistry of groundwater, from acid-mine drainage in the West to arsenic poisoning in wells in Bangladesh," said Craig Bethke, a UI professor of geology. "The bulk of the world’s microbial biomass operates by eating rocks – taking inorganic chemicals and using them to produce energy. By constructing quantitative models of that reaction process, we might find more effective solutions and control measures."

While various kinetic-rate laws currently exist, their empirical nature means they must be selected to match a given set of experimental results. "There is no guarantee that a rate law chosen to describe behavior observed in a laboratory culture will apply in a given geochemical environment," Bethke said. "Also, the available rate laws do not account for the amount of energy that might be derived by a given metabolism, further limiting their usefulness in modeling natural environments."

Graduate student Qusheng Jin and Bethke have devised a new description of microbial kinetics based upon the internal mechanisms of microbial respiration in terms of chemiosmotic theory. "In our approach, a cell’s metabolism is represented by a multi-step, enzymatically catalyzed reaction that is directly coupled to energy production by the development of a proton-motive force and the consequent synthesis of adenosine triphosphate from adenosine diphosphate," Bethke said. "We derive a rate law that accounts for the reaction’s thermodynamics and the energy required to produce ATP, as well as the abundance of microbes and the concentrations of substrate species and reaction products in solution."

The overall respiration reaction can be simplified into three steps: an electron-donor oxidation step, a rate-determining step and an electron-acceptor reduction step. The reactions between electron donors and acceptors are mediated by central metabolic pathways and electron transfer. Because the researchers based their equation for electron transport on first principles, it provides a fundamental description of microbial metabolism and can be applied over a broad range of parameters.

Under specific conditions, the generalized solution simplifies to the rate laws now in common use, Bethke said. "Our unified theory predicts the results of experiments conducted under a variety of conditions, and offers a simple explanation for threshold substrate concentrations – a phenomenon that, in many cases, can be shown to result directly from kinetic and thermodynamic principles."

The researchers presented their unified theory of microbial kinetics at the annual meeting of the Geological Society of America, held Nov. 9-18 in Reno, Nev.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Unified Theory Relates Microbial Metabolism To Lab And Field." ScienceDaily. ScienceDaily, 24 November 2000. <www.sciencedaily.com/releases/2000/11/001120072221.htm>.
University Of Illinois At Urbana-Champaign. (2000, November 24). Unified Theory Relates Microbial Metabolism To Lab And Field. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2000/11/001120072221.htm
University Of Illinois At Urbana-Champaign. "Unified Theory Relates Microbial Metabolism To Lab And Field." ScienceDaily. www.sciencedaily.com/releases/2000/11/001120072221.htm (accessed September 1, 2014).

Share This




More Plants & Animals News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins