Featured Research

from universities, journals, and other organizations

Unified Theory Relates Microbial Metabolism To Lab And Field

Date:
November 24, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
The ability to describe the rates at which microbial populations metabolize in the natural environment has been limited by the lack of a general theory of microbial kinetics. Now, researchers at the University of Illinois have found an approach that holds significant promise for extending the results of laboratory experiments to better understand microbial metabolism in nature

CHAMPAIGN, Ill. — The ability to describe the rates at which microbial populations metabolize in the natural environment has been limited by the lack of a general theory of microbial kinetics. Now, researchers at the University of Illinois have found an approach that holds significant promise for extending the results of laboratory experiments to better understand microbial metabolism in nature.

Related Articles


"The growth of microbial populations can have profound affects on the chemistry of groundwater, from acid-mine drainage in the West to arsenic poisoning in wells in Bangladesh," said Craig Bethke, a UI professor of geology. "The bulk of the world’s microbial biomass operates by eating rocks – taking inorganic chemicals and using them to produce energy. By constructing quantitative models of that reaction process, we might find more effective solutions and control measures."

While various kinetic-rate laws currently exist, their empirical nature means they must be selected to match a given set of experimental results. "There is no guarantee that a rate law chosen to describe behavior observed in a laboratory culture will apply in a given geochemical environment," Bethke said. "Also, the available rate laws do not account for the amount of energy that might be derived by a given metabolism, further limiting their usefulness in modeling natural environments."

Graduate student Qusheng Jin and Bethke have devised a new description of microbial kinetics based upon the internal mechanisms of microbial respiration in terms of chemiosmotic theory. "In our approach, a cell’s metabolism is represented by a multi-step, enzymatically catalyzed reaction that is directly coupled to energy production by the development of a proton-motive force and the consequent synthesis of adenosine triphosphate from adenosine diphosphate," Bethke said. "We derive a rate law that accounts for the reaction’s thermodynamics and the energy required to produce ATP, as well as the abundance of microbes and the concentrations of substrate species and reaction products in solution."

The overall respiration reaction can be simplified into three steps: an electron-donor oxidation step, a rate-determining step and an electron-acceptor reduction step. The reactions between electron donors and acceptors are mediated by central metabolic pathways and electron transfer. Because the researchers based their equation for electron transport on first principles, it provides a fundamental description of microbial metabolism and can be applied over a broad range of parameters.

Under specific conditions, the generalized solution simplifies to the rate laws now in common use, Bethke said. "Our unified theory predicts the results of experiments conducted under a variety of conditions, and offers a simple explanation for threshold substrate concentrations – a phenomenon that, in many cases, can be shown to result directly from kinetic and thermodynamic principles."

The researchers presented their unified theory of microbial kinetics at the annual meeting of the Geological Society of America, held Nov. 9-18 in Reno, Nev.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Unified Theory Relates Microbial Metabolism To Lab And Field." ScienceDaily. ScienceDaily, 24 November 2000. <www.sciencedaily.com/releases/2000/11/001120072221.htm>.
University Of Illinois At Urbana-Champaign. (2000, November 24). Unified Theory Relates Microbial Metabolism To Lab And Field. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2000/11/001120072221.htm
University Of Illinois At Urbana-Champaign. "Unified Theory Relates Microbial Metabolism To Lab And Field." ScienceDaily. www.sciencedaily.com/releases/2000/11/001120072221.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins