Featured Research

from universities, journals, and other organizations

Enzyme Is Crucial For Production Of Plant Growth Hormone

Date:
January 16, 2001
Source:
Howard Hughes Medical Institute
Summary:
Researchers have identified an enzyme involved in the production of auxin, a plant growth hormone that influences many aspects of plant growth, including cell division and flowering. Although auxin has been studied for more than 100 years, scientists have not had a good grasp of how the hormone is synthesized by plants.

January 12, 2001 -— Researchers have identified an enzyme involved in the production of auxin, a plant growth hormone that influences many aspects of plant growth, including cell division and flowering. Although auxin has been studied for more than 100 years, scientists have not had a good grasp of how the hormone is synthesized by plants.

In an article published in the January 12, 2001, issue of the journal Science, Howard Hughes Medical Institute investigator Joanne Chory and colleagues at the Human BioMolecular Research Institute in San Diego and the University of Minnesota reported identifying a new flavin monooxygenase (FMO)-like enzyme that is central to auxin biosynthesis. The finding reveals an important pathway for auxin synthesis and is likely to offer clues that will aid researchers studying similar enzymes in mammals. The role of the FMO-like enzymes was discovered when the scientists created a mutant form of the plant Arabidopsis that had growth characteristics indicative of auxin overproduction. Arabidopsis, a small flowering plant that is a relative of the mustard plant, is the basic model organism used in plant biology research.

"We were randomly inserting into the Arabidopsis genome DNA sequences called enhancer sequences that promote gene activity," said Chory, who is at The Salk Institute for Biological Studies. "Specifically, we were looking for mutants in the light-responsive pathway. One measure of the light-responsive pathway in plants is the length of the primary stem, or hypocotyl, under various light conditions," Chory explained. "Normally, light represses stem growth so that the stem becomes thicker and can support more leaves. In plants that don’t respond well to light due to mutations, the hypocotyl elongates."

According to Chory, one mutant produced during their experiments showed signs of overgrowth that is characteristic of auxin overproduction. "This mutant had long hypocotyls and increased apical dominance with down-curling leaves," said Chory. Apical dominance is the inhibition of lateral branching characteristically produced by auxin.

"These characteristics resulted in a plant that resembled the yucca, so we named the mutant yucca. Importantly, all these characteristics were sort of shouting out to us that there was an overproduction of auxin," said Chory.

If the outward appearance of the yucca mutant proved to be caused by auxin overproduction, then the dominant, fertile yucca could offer the first experimental system in which to study how auxin is synthesized. Previous attempts by other researchers to produce loss-of-function auxin mutants—the standard approach to exploring a synthetic pathway—met with no success.

Analysis of the yucca-mutant plants revealed that they did, indeed, show increased auxin levels, said Chory. Also, physiological and genetic experiments on the plants showed that these high auxin levels caused the distinctive growth characteristics of the yucca mutant. Also, the scientists were able to repress yucca’s distinctive growth characteristics by using genetic techniques that specifically reduced auxin levels in the mutant plant.

To test whether the pathway controlled by the yucca gene was also likely to be used for auxin synthesis in other plants, the researchers overexpressed the YUCCA gene in tobacco plants. These experiments dramatically altered the tobacco plant, creating tobacco plants that resembled the yucca-induced changes in Arabidopsis.

To identify the enzyme expressed by the YUCCA gene, the scientists did genetic studies and found that the gene resembled FMO genes found in mammals, said Chory. Searches of the genome database of Arabidopsis revealed that the plant possessed two families of FMO-like genes. When the scientists used activation tagging to overexpress some of these genes in plants, the plants resembled the yucca mutant. Such redundancy, said Chory, finally explains why past efforts to produce knockout auxin mutants failed.

Plant biologists have debated whether auxin biosynthesis proceeded via a pathway that is dependent on the amino acid tryptophan. Studies of this FMO-like enzyme in yucca revealed that the enzyme most likely catalyzes the oxygenation of the compound tryptamine, a key finding, said Chory.

"That finding made us go back and look at the proposed pathways for auxin biosynthesis, none of which have been sorted out in the plant. And since the tryptamine that this enzyme acts on comes from the tryptophan-dependent pathway for auxin biosynthesis, this shows that in yucca, auxin biosynthesis proceeds via a tryptophan-dependent pathway."

However, she added, the picture of auxin biosynthesis is complicated by the fact that other scientists have produced mutant plants that cannot produce tryptophan, yet they can still produce auxin. "Thus, there is an alternative route, but at least now we can begin to propose a pathway for the tryptophan-dependent part of auxin biosynthesis."

Chory and her colleagues are now exploring the different FMO-like enzymes in Arabidopsis, and she believes that insights from the plant enzyme could yield insight into the function of the mammalian counterparts.

"No one knows the reason why animals have these enzymes," she says. "They know that the FMOs can act to detoxify xenobiotics—naturally-occurring toxic compounds in food. Our results suggest that researchers studying these mammalian enzymes should look at tryptophan metabolism as one of the important physiological roles for these enzymes."


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Enzyme Is Crucial For Production Of Plant Growth Hormone." ScienceDaily. ScienceDaily, 16 January 2001. <www.sciencedaily.com/releases/2001/01/010111194213.htm>.
Howard Hughes Medical Institute. (2001, January 16). Enzyme Is Crucial For Production Of Plant Growth Hormone. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2001/01/010111194213.htm
Howard Hughes Medical Institute. "Enzyme Is Crucial For Production Of Plant Growth Hormone." ScienceDaily. www.sciencedaily.com/releases/2001/01/010111194213.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins