Featured Research

from universities, journals, and other organizations

Want To Get Rid Of Trash Quicker? Just Add Water, Study Suggests

Date:
January 18, 2001
Source:
Ohio State University
Summary:
Trash in a municipal landfill could decompose nearly 10 to 20 times faster than it normally does through a system that keeps the trash continuously wet, new research suggests.

COLUMBUS, Ohio - Trash in a municipal landfill could decompose nearly 10 to 20 times faster than it normally does through a system that keeps the trash continuously wet, new research suggests.

Landfills are normally dry environments, and the lack of adequate moisture doesn't allow biodegradable trash to decompose as quickly as it should, say researchers at Ohio State University.

In fact, keeping a landfill saturated means it could stabilize in five to 10 years, instead of taking the average 100 years or longer to do so, said Ann Christy, an assistant professor of food, agricultural and biological engineering at Ohio State. In a stabilized landfill, the majority of trash has decomposed.

"Quicker decomposition rates mean more room for more trash in the same landfill, which would cut down on the need for additional landfill space," she said. "This also feeds into recycling - once the biodegradable material decomposes, we can extract recyclables from the landfills, then the landfills aren't filling up at as quickly."

Christy is currently experimenting with moisture levels in two laboratory-scale wet-tomb bioreactors. A wet-tomb bioreactor is a self-contained unit with water purposely pumped in - the water creates an environment suitable for bacteria to actively decompose waste. The water is recirculated throughout the system.

Christy's research appears in a recent issue of the journal Applied Engineering in Agriculture. She co-authored the study with Olli Tuovinen, a professor of microbiology at Ohio State, and Michael Myers, an engineer with the North Carolina Department of Environment and Natural Resources.

Christy and her colleagues monitored the experimental bioreactors for 15 months. Each bioreactor - or bin - was filled with approximately 3,300 pounds (1.5 metric tons) of non-shredded municipal solid waste collected from a local sanitary landfill. (While many small-scale landfills require waste to be shredded in order for it to fit, shredding is not economically feasible for a full-scale landfill, Christy said.) The bins were 3 feet long, 6 feet wide and 3 feet tall. The researchers could watch the decomposition through a 2-by-2.5 feet Plexiglas observation window installed in each bin.

The waste in one bin was covered with a single layer of sludge - sewage already decomposed by bacteria. Sludge has been used in landfills to help increase the rate at which trash decomposes. At the beginning of the study, researchers poured distilled water into each bin, until they saw the water draining into the liner under the bins. The used water - or leachate - was continuously pumped through the bins again via leachate recirculation pipes.

While the researchers did not get the decomposition results they had hoped for - the mass in the bin with the sludge layer decreased by 1 percent (to 3009 pounds) in 15 months, and the mass of the other bin decreased by 1.3 percent (to 2989 pounds) - they are confident that keeping a relatively high level of moisture in a landfill would increase the rate of decomposition, Christy said.

She attributed the lower-than-expected decomposition rates in this study to the lack of adequate amounts of bacteria and also the lack of heat production. Paper and plastic comprised 70 percent of the solid waste in these bins, while the two most readily biodegradable products, yard waste and food waste, comprised less than 5 percent of the total mass.

"The disproportionate amount of recyclables (paper and plastic) in the bins were undoubtedly a hindrance to the bacteria's success in breaking down the trash," Christy said. "In a full-size landfill, the types of trash would be more evenly distributed."

Christy is continuing the experiment, and says the next step is to take the technology to a full-scale landfill.

Because it is a self-contained system, constructing a full-scale wet-tomb bioreactor would be costlier at the outset, Christy said. Unlike current landfills, the bioreactors need the machinery, such as pumps and pipes, to recirculate leachate. But they would save money in the long run, because there would be no need to collect leachate and take it to a treatment facility, as is necessary with current landfills.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Want To Get Rid Of Trash Quicker? Just Add Water, Study Suggests." ScienceDaily. ScienceDaily, 18 January 2001. <www.sciencedaily.com/releases/2001/01/010118071032.htm>.
Ohio State University. (2001, January 18). Want To Get Rid Of Trash Quicker? Just Add Water, Study Suggests. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2001/01/010118071032.htm
Ohio State University. "Want To Get Rid Of Trash Quicker? Just Add Water, Study Suggests." ScienceDaily. www.sciencedaily.com/releases/2001/01/010118071032.htm (accessed September 23, 2014).

Share This



More Earth & Climate News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
French FM Urges 'powerful' Response to Global Warming

French FM Urges 'powerful' Response to Global Warming

AFP (Sep. 22, 2014) French Foreign Minister Laurent Fabius on Monday warned about the potential "catastrophe" if global warming was not dealt with in a "powerful" way. Duration: 01:08 Video provided by AFP
Powered by NewsLook.com
Ongoing Drought, Fighting Put Somalia at Risk of Famine

Ongoing Drought, Fighting Put Somalia at Risk of Famine

AFP (Sep. 22, 2014) After a year of poor rains and heavy fighting Somalia is again at risk of famine, just three years after food shortages killed 260,000 people. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins