Featured Research

from universities, journals, and other organizations

UCSD Biologists Discover New Class Of Genes Responsible For Embryonic Development

Date:
May 4, 2001
Source:
University Of California, San Diego
Summary:
Biologists at the University of California, San Diego have discovered in the roundworm C. elegans a new class of genes necessary for the normal development of the earliest stages of embryonic development in animals.

Biologists at the University of California, San Diego have discovered in the roundworm C. elegans a new class of genes necessary for the normal development of the earliest stages of embryonic development in animals.

Related Articles


In the May issue of the journal Developmental Biology, the UCSD researchers report the discovery of a new class of genes that regulates the asymmetric division of the first cell in the developing embryo into an unequal sized pair of cells.

"The actual mechanisms by which this happens are not well understood," says Raffi V. Aroian, an assistant professor of biology at UCSD who headed the research. "By understanding more about the genes that regulate this process, we can provide more information about one of the key questions in developmental biology-how complex organisms such as humans develop from a single-celled embryo."

In normal embryos, the larger of these cells develops into the outer layers of an organism, such as its skin and nervous system, while the smaller of the two cells develops into the inner portions, such as its muscle, gut and reproductive organs. When one of the genes in this new class is defective, however, the absence of differences between the two cells prevents the differentiation necessary for development.

"If the asymmetrical division is screwed up, the embryo is never going to make it," says Akiko Tagawa, a graduate student and the lead author of the paper, which also includes Chad A. Rappleye, another graduate student working in Aroian's laboratory. "It quickly dies."

In addition, the cells containing these mutant genes are vulnerable to bursting and shriveling. This is due to the inability of the defective embryo's cell membranes to maintain the cell's osmotic pressure, which can produce an undesirable flood of fluids into or out of the cells.

The UCSD scientists have dubbed their new class pod genes-for polarity and osmotic defective genes-because mutations in them result in embryos with defective osmoregulatory mechanisms and an inability to establish "polarity," the process by which developing embryos differentiate their cells during the first cell division.

Another set of genes known to regulate the polarity in the developing embryo is known as PAR, because mutations in these genes lead to errors in the partitioning of germline granules that, in a healthy embryo, all flow into the smaller of the first two dividing cells. First discovered in 1988, six PAR mutants have been identified in C. elegans and related genes have been found in frog, fruit fly and mammalian cells. Mutations in all of these genes, like mutations in the pod genes, result in symmetrical, two-celled embryos incapable of developing normally.

The first pod gene, pod-1, was discovered four years ago in Aorian's laboratory. The second, pod-2, discovered by Tagawa in a genetic screen, is described in the team's paper in this month's issue of Developmental Biology. Its discovery suggests that, like the six PAR genes discovered since 1988, many more pod genes will be found.

"This discovery has opened up for scientists a whole new class of genes critical for the earliest development of embryos," says Aroian. "Since a number of the genes in the C. elegans polarity pathway appear to play a role in the development of human cells, it is reasonable to think that pod genes may also play a role in human development."

In addition, Aroian speculates that pod genes may have an important role in the development of human cancers that arise because of problems in polarity. "Polarized epithelial cells give rise to 80 to 90 percent of cancers," he notes. "This class of genes may play an important role in that."

The UCSD team's research was supported by the National Science Foundation, the March of Dimes Birth Defects Foundation and the University of California's Cancer Research Coordinating Committee.


Story Source:

The above story is based on materials provided by University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego. "UCSD Biologists Discover New Class Of Genes Responsible For Embryonic Development." ScienceDaily. ScienceDaily, 4 May 2001. <www.sciencedaily.com/releases/2001/05/010503092903.htm>.
University Of California, San Diego. (2001, May 4). UCSD Biologists Discover New Class Of Genes Responsible For Embryonic Development. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2001/05/010503092903.htm
University Of California, San Diego. "UCSD Biologists Discover New Class Of Genes Responsible For Embryonic Development." ScienceDaily. www.sciencedaily.com/releases/2001/05/010503092903.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins