Featured Research

from universities, journals, and other organizations

Norwegian Sea Proposed As Storage Site For Carbon Dioxide

Date:
June 27, 2001
Source:
American Geophysical Union
Summary:
Researchers in Bergen, Norway, have proposed a large scale demonstration project, in which carbon dioxide (CO2) would be pumped directly from offshore oil and gas fields to the deep waters of the Norwegian Sea. The project would test the conclusions of a theoretical study, using computer models, that suggests the Norwegian Sea, through transport to the Atlantic Ocean, would provide safe, long term storage of this greenhouse gas, which would otherwise enter the atmosphere and contribute to global warming.

WASHINGTON - Researchers in Bergen, Norway, have proposed a large scale demonstration project, in which carbon dioxide (CO2) would be pumped directly from offshore oil and gas fields to the deep waters of the Norwegian Sea. The project would test the conclusions of a theoretical study, using computer models, that suggests the Norwegian Sea, through transport to the Atlantic Ocean, would provide safe, long term storage of this greenhouse gas, which would otherwise enter the atmosphere and contribute to global warming.

Related Articles


Drs. Helge Drange and Guttorm Alendal and Prof. Ola M. Johannessen at the Nansen Environmental and Remote Sensing Center in Bergen will publish their study in the 1 July issue of Geophysical Research Letters, published by the American Geophysical Union. They note that the oceans already absorb carbon dioxide from the atmosphere, but the process of mixing the gas at deep levels can take up to 1,000 years. Purposeful storage could, they say, be viewed as an acceleration of a natural process. This option would be successful only if certain environmental and economic considerations can be satisfied, they note.

The Norwegian Sea is a deep basin off Norway's northwestern coast, beyond Haltenbanken, a region on the continental shelf where oil and gas fields produce carbon dioxide as a by-product. The modeling study assumes the annual carbon dioxide emissions from various size gas power plants over a ten year period. Drange and his colleagues considered the effect of releasing carbon dioxide, collected at the source, at various depths from 350 to 950 meters [1,150-3,120 feet]. They conclude that if the initial size of the carbon dioxide particles is four millimeters [0.2 inches] or less, the plume would rise no more than 100 meters [330 feet] from the point it enters the ocean.

Once the injected carbon dioxide has dissolved in the seawater, it tends to sink lower and eventually transport to the Atlantic Ocean through passages between Iceland and Scotland. Its acidity, higher than that of the ambient seawater, could affect deep sea organisms, which are used to a relatively constant chemical environment. This is an area the researchers say needs further study. They say the level of acidity can be reduced by not pumping all of the carbon dioxide to one point, but using rather an array of ports located 5-10 meters [16-33 feet] apart in the cross-stream of the prevailing current.

The model predicts how much carbon dioxide would rapidly reach the surface and enter the atmosphere, based on the depth at which it was originally released. The researchers say that 600 meters [2,000 feet] is the minimal safe depth, and 800 meters [2,600 feet] still safer. At the depth of 950 meters [3,100 feet], virtually no "outgassing" occurs, and the carbon dioxide-enriched water stays well below the level at which it might mix with upper ocean water. Following normal flows from the Norwegian Sea, this water will enter the northern Atlantic Ocean as bottom water and remain isolated from the atmosphere for centuries.

Aside from the question of possible effects on deep ocean organisms, the process of sequestering carbon dioxide in the Norwegian Sea would have to be economically viable, the researchers say. They find that the technology is presently available, and the cost of implementing the project might actually be lower than the tax the Norwegian government now imposes on emissions of carbon dioxide from offshore oil and gas fields.

Drange and colleagues emphasize that their theoretical conclusions must be tested in real world conditions, including the cumulative effects of instituting many such sequestration projects, rather than just one. Among the issues to be addressed are the impact on marine organisms and the independent effect of increasing acidification of ocean surface waters, due to higher atmospheric carbon dioxide levels.

The study was funded by Saga Petroleum AS, the Norwegian Research Council, the Nordic Council of Ministers, and the EC Environmental and Climate Programme.


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Cite This Page:

American Geophysical Union. "Norwegian Sea Proposed As Storage Site For Carbon Dioxide." ScienceDaily. ScienceDaily, 27 June 2001. <www.sciencedaily.com/releases/2001/06/010619073338.htm>.
American Geophysical Union. (2001, June 27). Norwegian Sea Proposed As Storage Site For Carbon Dioxide. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2001/06/010619073338.htm
American Geophysical Union. "Norwegian Sea Proposed As Storage Site For Carbon Dioxide." ScienceDaily. www.sciencedaily.com/releases/2001/06/010619073338.htm (accessed November 1, 2014).

Share This



More Earth & Climate News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Controversial French Dam Halted After Death of Protester

Controversial French Dam Halted After Death of Protester

AFP (Oct. 31, 2014) Local French authorities Friday decided to suspend work on a controversial dam after the death last week of an activist protesting against the project that sparked uproar in the country. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Raw: Hawaii Lava Inches Closer

Raw: Hawaii Lava Inches Closer

AP (Oct. 30, 2014) Aerial video shows the path lava has carved across a portion of Hawaii's big island, threatening homes in the town of Pahoa. Officials say the flow was just over 230 yards from a roadway Thursday morning. (Oct. 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins