Featured Research

from universities, journals, and other organizations

New Technique Dates Faults Near Earth's Surface

Date:
July 12, 2001
Source:
University Of Michigan
Summary:
A new approach developed by scientists at the University of Michigan and ExxonMobil Upstream Research Company allows direct dating of faults---surfaces along which rocks break and move---near Earth's surface. A report on the work appears in the July 12 issue of the journal Nature.

ANN ARBOR -- A new approach developed by scientists at the University of Michigan and ExxonMobil Upstream Research Company allows direct dating of faults---surfaces along which rocks break and move---near Earth's surface. A report on the work appears in the July 12 issue of the journal Nature.

Dating shallow faults is essential to understanding the evolution of Earth's crust, the interactions among the plates that make up Earth's surface, and the processes by which faults are activated and reactivated, explains Ben van der Pluijm, professor of geological sciences at U-M.

For some time, scientists have been able to directly determine the ages of deeper rocks, but until now the age of shallow crustal faults could only be inferred through indirect dating methods---by studying the ages of fossils in associated deposits, for example.

Such estimates can suggest only a broad age range spanning many million years, not a precise age. The technique described in Nature, however, narrows down the age to within a couple of million years---practically pinpoint accuracy in geologic terms.

The researchers used the new method, which combines several approaches, to carefully analyze clays from near-surface faults in the Canadian Rocky Mountains. "That's an extremely well-studied area geologically, but there have been few reliable absolute ages on the faulting," says van der Pluijm. As a result, "we have not been able to get a firm handle on how fast processes like mountain building occur, when old faults stop being active and when new ones kick in, and the link between global plate tectonic processes and their surface expression," he says.

That kind of information has more than academic value, says van der Pluijm: "If you remember the stories about earthquakes in California, they often occur along faults we hadn't really seen active before. It's not because they weren't there; they just hadn't been activated in recent record." While the new method probably never will help scientists predict exactly when earthquakes will strike again at a specific fault, it should provide more general insights into the fault processes involved.

"If we understand more about the rates of these processes, we'll understand more about recurrence in general, and we'll get a better understanding of the mechanical behavior of the outer part of Earth," says van der Pluijm. "So we might ultimately get a better handle on the activation and reactivation of faults."

Van der Pluijm collaborated on the research with U-M research scientist Chris M. Hall, and Peter J. Vrolijk, David R. Pevear and Michael C. Covey of ExxonMobil Upstream Research Co. in Houston, Texas.

The work was supported by the National Science Foundation and Exxon Production Research Co.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "New Technique Dates Faults Near Earth's Surface." ScienceDaily. ScienceDaily, 12 July 2001. <www.sciencedaily.com/releases/2001/07/010712080846.htm>.
University Of Michigan. (2001, July 12). New Technique Dates Faults Near Earth's Surface. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2001/07/010712080846.htm
University Of Michigan. "New Technique Dates Faults Near Earth's Surface." ScienceDaily. www.sciencedaily.com/releases/2001/07/010712080846.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins