Featured Research

from universities, journals, and other organizations

Mechanism Believed Found That Regulates Movement Within Cells

Date:
August 20, 2001
Source:
University Of Illinois At Urbana-Champaign
Summary:
The movement of pigment along roadway-like tracks in skin cells dictates the changing colors of frogs, fish and many other animals. To biologists looking beyond the color-shifting process, however, a more fundamental mechanism involved in cell division has come into view.

CHAMPAIGN, Ill. — The movement of pigment along roadway-like tracks in skin cells dictates the changing colors of frogs, fish and many other animals. To biologists looking beyond the color-shifting process, however, a more fundamental mechanism involved in cell division has come into view.

In the Aug. 17 issue of Science, researchers say they have identified a mechanism that determines whether a pigment moves or not. A small regulatory protein, they say, determines if a part of the tail of a larger motor protein binds to a pigment, allowing it to move. The study shows that the motor disengages as a result of phosphorylation, a chemical reaction occurring in cell division.

The discovery was made in pigment cells taken from the skin of a frog (Xenopus), but the evidence suggests that the tail phosphorylation may be common in many other cells. “We want to believe that what we have found is a universal mechanism that regulates movement within the cell,” said Vladimir I. Gelfand, a professor of cell and structural biology at the University of Illinois. If the mechanism is indeed common, he said, new drugs potentially could target it to stop the replication of cancer-laden cells.

Pigment is a form of organelle. Organelles are structures having a variety of duties within cells. Motor proteins, activated by hormones, drive organelles along two cytoskeletal systems comparable to interstates and narrow city streets. During cell division, the organelles are stopped so they do not interfere and to assure the proper distribution of genetic material.

Gelfand, in the Journal of Cell Biology in 1999, had identified myosin-V as the motor protein that moves organelles along the city-like roads made up of actin filaments. Two other motor proteins do the job along microtubules, or larger, longer-reaching, interstate-like fibers.

The new study details the binding of myosin-V to pigment organelles. “We found that when the motor is on, it is sitting on the organelle,” Gelfand said. “When the motor is off, there is nothing there. The motor is in neutral, as if a clutch is pushed. We wanted to know why the motor disengages.”

The answer was the smaller protein, known as calcium/calmodulin-dependent protein kinase II (CaMKII). A series of experiments clearly showed that CaMKII is the clutch in a variety of scenarios involving myosin-V, Gelfand said. The two proteins are often found together in laboratory analyses.

“It is possible that CaMKII regulates myosin-V functions in neurons with the same basic mechanism that is described here for pigment cells,” the researchers wrote in their conclusion.

The Science paper was written by Gelfand and two UI graduate students, Ryan L. Karcher and Joseph T. Roland, Stephen A. Carr of Millennium Pharmaceuticals and Francesca Zappacosta, Michael J. Huddleston and Roland S. Annan, all of GlaxoSmithKline. The National Science Foundation and National Institutes of Health funded the research.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Mechanism Believed Found That Regulates Movement Within Cells." ScienceDaily. ScienceDaily, 20 August 2001. <www.sciencedaily.com/releases/2001/08/010820071937.htm>.
University Of Illinois At Urbana-Champaign. (2001, August 20). Mechanism Believed Found That Regulates Movement Within Cells. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2001/08/010820071937.htm
University Of Illinois At Urbana-Champaign. "Mechanism Believed Found That Regulates Movement Within Cells." ScienceDaily. www.sciencedaily.com/releases/2001/08/010820071937.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins