Featured Research

from universities, journals, and other organizations

Study Shows Waves In Southern California, North Pacific More Powerful Over Last 50 Years

Date:
October 19, 2001
Source:
University Of California - San Diego
Summary:
Since 1975, intensified waves rolling in from the west, increasing coastal impact Images available upon request New research presents evidence that waves in the North Pacific Ocean—particularly in southern California—have increased substantially in size and intensity over the past half century as a result of stronger wind and storm activity.

Since 1975, intensified waves rolling in from the west, increasing coastal impact Images available upon request New research presents evidence that waves in the North Pacific Ocean—particularly in southern California—have increased substantially in size and intensity over the past half century as a result of stronger wind and storm activity.

The findings also suggest that the approach direction of winter ocean swells impacting southern California has rotated from more northwesterly directions to more westerly directions over the years. This change reduces the natural sheltering effects of the Channel Islands and Point Conception, resulting in more direct effects on the coast.

"Winter storms have been getting stronger and the storm track has been shifting southward—both changes have important effects on the wave environment in southern California," said lead author Nick Graham of Scripps Institution of Oceanography at the University of California, San Diego, and the Hydrologic Research Center. "This information could be important for studying changes in the coastal environment and for coastal management and planning."

The paper, co-authored by Henry Diaz of the National Oceanic and Atmospheric Administration (NOAA) Climate Diagnostics Center, appears in a recent issue of the Bulletin of the American Meteorological Society.

Graham said that extreme-wave studies with colleagues since the 1970s repeatedly suggested that waves in the North Pacific have been increasing in size and strength. But observational methods and data necessary to provide rigorous support for such an assumption were limited. That was until the National Centers for Environmental

Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) developed a "reanalysis" dataset that provided, among other data, a consistent record of sea level pressure and surface wind data. This allowed accurate reconstructions of winter storm activity and ocean waves from 1948 though 1998.

Graham took that crucial database and cross-referenced it with in-the-field data from ocean-station vessels, radiosonde reports, data buoys, and observing ships.

Together, the results portrayed a "surprisingly regular" and statistically significant pattern of increasingly vigorous storm-driven wave activity across much of the North Pacific since the mid-twentieth century.

The backward-looking wave analysis, or "hindcast," shows that the wave climate over many parts of the North Pacific has become rougher since 1948, with extreme wave heights increasing approximately 1 to 2 meters, or roughly 20 to 30 percent.

Especially significant changes have occurred in southern California.

"Over the past 50 years the hindcast results indicated that winter waves have gotten 35 percent larger in southern California, which is significant," said Graham.

The report says the change may be attributed directly to increases in upper-level winds. These stronger "jet stream" westerly winds provide an environment more favorable for the formation and intensification of strong winter storms.

What then, is behind the changes in upper-level winds?

Although Graham and Diaz do not arrive at a conclusion, they argue that those increases may be attributed to one or a combination of factors, including changes in sea surface temperatures in the tropics. These changes may be related to human-produced alterations caused by greenhouse warming, natural climate variations, or both.

As a byproduct of the investigation, Graham found that the wave direction in southern California has shifted since 1975. Instead of approaching from a more northwesterly direction, the waves are now coming directly from the west. The sheltering previously afforded by natural barriers has diminished.

"These are profound long-term changes and they have important implications from economic and beach-management perspectives," said Graham. "They play into questions about coastal construction, coastal erosion, and debates on coastal protection strategies. We need to account for these significant changes in wave climate and its behavior in our coastal planning."

The study was funded by the NOAA Climate Diagnostics Center, the Director’s Office at Scripps Institution of Oceanography, Pacific Weather Analysis, and the Hydrologic Research Center.

Note: Images and video available at http://scrippsnews.ucsd.edu/releases2001/graham_erosion.html

Scripps Institution of Oceanography on the World Wide Web: http://scripps.ucsd.edu

Scripps News on the World Wide Web: http://scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. More than 300 research programs are under way today in a wide range of scientific areas. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "Study Shows Waves In Southern California, North Pacific More Powerful Over Last 50 Years." ScienceDaily. ScienceDaily, 19 October 2001. <www.sciencedaily.com/releases/2001/10/011017065232.htm>.
University Of California - San Diego. (2001, October 19). Study Shows Waves In Southern California, North Pacific More Powerful Over Last 50 Years. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2001/10/011017065232.htm
University Of California - San Diego. "Study Shows Waves In Southern California, North Pacific More Powerful Over Last 50 Years." ScienceDaily. www.sciencedaily.com/releases/2001/10/011017065232.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins