Featured Research

from universities, journals, and other organizations

Southern Ocean Iron May Have Come From The Depths, Not The Atmosphere, Researchers Conclude

Date:
December 20, 2001
Source:
American Geophysical Union
Summary:
Scientists believe that increases in plant life in the Southern Ocean are associated with increases in iron, which acts as a fertilizer, in the ocean water. This "Iron Hypothesis" was put forward a decade ago by the late John Martin. Iron is usually in short supply but, according to Martin, could have been delivered in greater amounts via dust falling into the ocean during intervals between glacial periods. Two researchers from Indiana University - Purdue University Indianapolis (IUPUI) now cast doubt on dust as the principal source of iron and propose an alternative source of iron in the Southern Ocean.

WASHINGTON - Scientists believe that increases in plant life in the Southern Ocean are associated with increases in iron, which acts as a fertilizer, in the ocean water. This "Iron Hypothesis" was put forward a decade ago by the late John Martin. Iron is usually in short supply but, according to Martin, could have been delivered in greater amounts via dust falling into the ocean during intervals between glacial periods. Two researchers from Indiana University - Purdue University Indianapolis (IUPUI) now cast doubt on dust as the principal source of iron and propose an alternative source of iron in the Southern Ocean.

Jennifer Latimer, a doctoral student, and Professor Gabriel Filippelli suggest that increased amounts of iron may have been delivered predominantly from deep ocean waters that rose, or upwelled, to the surface. They presented their results at the American Geophysical Union's Fall Meeting in San Francisco and in a peer reviewed paper to be published in Paleoceanography, an AGU journal, both in December.

The researchers found that increases in biological productivity during intervals between glacial periods in portions of the Southern Ocean, which surrounds Antarctica, coincided with increases in biologically available iron and the input of material from continents. This input may have been closely linked with increased weathering and delivery of material from continental shelves, which are exposed during glacial periods, when sea level is lower. Material from the continents runs off into the ocean, and the intensified ocean circulation associated with glacial periods helps to mix the material, bringing nutrients from deep ocean waters to the surface through upwelling. Latimer and Filippelli conclude that the major source of iron in the Southern Ocean was not from wind-blown dust falling from the atmosphere, but from deep ocean waters below, which they call the "Upwelled Iron Hypothesis."

Latimer and Filippelli performed an extensive array of geochemical tests on sediments from cores collected across the Polar Front Zone in the South Atlantic and Indian Oceans. They sought to identify the potential sources for minerals from land masses found in these core samples, the availability of iron for organisms from this matter, and its biological effect. They are currently analyzing sites spanning a wider range of latitudes in the Southern Ocean. Together with other scientists, they hope to examine the duration of this phenomenon by using several cores recently extracted from the South Atlantic, containing continuous sediment records spanning the last several million years.

The implication for this increased iron-fertilized plant growth is far-reaching. During these periods of increased phytoplankton growth, the larger number of organisms engaged in photosynthesis in the ocean might have tipped the carbon balance such that atmospheric carbon dioxides decreased. (In photosynthesis, carbon dioxide and water combine in green plants to form simple sugar and oxygen.) This may in turn have provided a positive feedback leading to cooler global conditions.


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Cite This Page:

American Geophysical Union. "Southern Ocean Iron May Have Come From The Depths, Not The Atmosphere, Researchers Conclude." ScienceDaily. ScienceDaily, 20 December 2001. <www.sciencedaily.com/releases/2001/12/011220081246.htm>.
American Geophysical Union. (2001, December 20). Southern Ocean Iron May Have Come From The Depths, Not The Atmosphere, Researchers Conclude. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2001/12/011220081246.htm
American Geophysical Union. "Southern Ocean Iron May Have Come From The Depths, Not The Atmosphere, Researchers Conclude." ScienceDaily. www.sciencedaily.com/releases/2001/12/011220081246.htm (accessed September 19, 2014).

Share This



More Earth & Climate News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) — An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) — Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins