Featured Research

from universities, journals, and other organizations

UCSD Biologists Discover That Machinery For Cell Division Plays Dual Role In Partitioning Developing Embryo

Date:
February 8, 2002
Source:
University Of California - San Diego
Summary:
Biologists at the University of California, San Diego have discovered that the embryonic development of the first axis of an animal-which defines its inner and outer layers and is initiated by the entry of sperm into an egg-is intimately linked to a protein complex long known to be instrumental in cell division.

Biologists at the University of California, San Diego have discovered that the embryonic development of the first axis of an animal-which defines its inner and outer layers and is initiated by the entry of sperm into an egg-is intimately linked to a protein complex long known to be instrumental in cell division.

Their finding, detailed in a paper featured on the cover of the February issue of the journal Developmental Cell, provides a more complete molecular picture for developmental biologists of how the one-celled embryo divides into an organism's outer layers-such as its skin and nervous system-and its inner layers, such as its muscle, gut and reproductive organs.

"What we discovered are some of essential parts of the machinery that a cell uses to set up differences in the embryo so that different types of tissue eventually develop," says Chad A. Rappleye, a graduate student in UCSD's Division of Biology and the first author of the report. "People have long known that the sperm's entry into the egg prompts these initial differences. But how the cell sets up these molecular differences has been largely unknown. We found that this protein complex, long associated with a very different function, is essential for positioning the different molecular markers within the cell."

This protein complex-called Anaphase-Promoting Complex, or APC-appears to play two completely different roles in the cell. APC has long been known among biologists, as its name suggests, for its role in preparing the cell for division by allowing it progress through the metaphase to anaphase transition in the cell cycle. But it now appears to also play a central role in embryonic development.

"Our discovery helps to potentially explain why APC is such a huge complex, because it has multiple roles," says Raffi V. Aroian, an assistant professor of biology at UCSD who headed the investigation. "What evolution has done is taken a complex process for progression through the cell cycle and used it again to divide the one-celled embryo into its two basic fates, the inside and outside of organisms."

The UCSD research team-which included Akiko Tagawa, a graduate student in Aorian's laboratory; Bruce Bowerman, a professor of biology at the University of Oregon; and Rebecca Lyczak, a postdoctoral fellow in Bowerman's laboratory-uncovered the role of APC in development through a series of painstaking experiments that Rappleye conducted with mutants of the roundworm C. elegans.

Over a two-year period, Rappleye found mutants with impaired APC function and demonstrated that the protein complex helps the sperm push a protein known as PAR-3 away from just one region of the embryo so that a different protein, known as PAR-2, can bind to that one region. In this way, PAR-3 ends up at one end and PAR-2 ends up at the other end of the embryo, establishing fundamental differences from one end to the other so that the one-celled embryo divides into an unequal sized pair of cells. The larger daughter develops into the outer layers of the organism and the smaller into the inner layers. The proteins are known as PAR, because mutations in the genes that produce them lead to errors in the partitioning of germline granules that, in a healthy embryo, all flow into the smaller of the first two dividing cells.

This can be seen in a series of photographs taken by Rappleye of roundworm sperm DNA (at arrow) entering a normal egg (at right) and an egg with impaired APC function (at left). The APC in the normal embryo pushes the PAR-3 proteins in blue) away from the site of the sperm's entry, resulting in an asymmetric distribution of the PAR-3 and PAR-2 proteins (in red), with the mitotic spindle (in green) displaced toward the PAR-2 end. When APC function is impaired in the mutant embryo (left sequence), the cell splits into two equal sized cells and the mitotic spindle remains at the center.

Besides providing developmental biologists with a better understanding of the biochemistry and genetics of the earliest stages of embryonic development, the UCSD team's discovery is likely to spur scientists to search for other proteins in the cell with dual roles.

"The idea that the general cellular machinery can play a direct role in specialized processes in development opens up a new way of thinking," says Aroian. "It changes the mindset of cell and developmental biologists. But from the cell's perspective, it makes perfect sense. Cells don't have to develop a whole new type of cellular machinery for development. They can use something they already have for another purpose."


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "UCSD Biologists Discover That Machinery For Cell Division Plays Dual Role In Partitioning Developing Embryo." ScienceDaily. ScienceDaily, 8 February 2002. <www.sciencedaily.com/releases/2002/02/020201075424.htm>.
University Of California - San Diego. (2002, February 8). UCSD Biologists Discover That Machinery For Cell Division Plays Dual Role In Partitioning Developing Embryo. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2002/02/020201075424.htm
University Of California - San Diego. "UCSD Biologists Discover That Machinery For Cell Division Plays Dual Role In Partitioning Developing Embryo." ScienceDaily. www.sciencedaily.com/releases/2002/02/020201075424.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins