Featured Research

from universities, journals, and other organizations

Terra Measures Sea Surface Temperature With Unprecedented Detail

Date:
March 5, 2002
Source:
NASA/Goddard Space Flight Center
Summary:
A new sensor orbiting the Earth aboard NASA’s Terra satellite is now collecting the most detailed measurements ever made of the sea’s surface temperature every day all over the globe. Like a sophisticated thermometer in space, the Moderate-resolution Imaging Spectroradiometer (MODIS) is helping Earth scientists advance studies of how our world's oceans and atmosphere interact in ways that drive weather patterns and, over the long term, define our climate.

A new sensor orbiting the Earth aboard NASA’s Terra satellite is now collecting the most detailed measurements ever made of the sea’s surface temperature every day all over the globe. Like a sophisticated thermometer in space, the Moderate-resolution Imaging Spectroradiometer (MODIS) is helping Earth scientists advance studies of how our world's oceans and atmosphere interact in ways that drive weather patterns and, over the long term, define our climate.

Comparing MODIS’ space-based measurements with surface measurements collected from ships and buoys, the MODIS team finds the satellite sensor measures sea surface temperature accurate to within about 0.25°C, which is better than twice the accuracy of previous satellites. Daily global measurements of sea surface temperature (SST) accurate to within half a degree has been a goal of oceanographers for decades. The MODIS team presented their new data product today at the Ocean Sciences 2002 Meeting of the American Society of Limnology and Oceanography and the American Geophysical Union in Honolulu.

According to Otis Brown, dean of the Rosenstiel School of Marine and Atmospheric Science and professor of meteorology and physical oceanography at the University of Miami, the need for more accurate measurements of the ocean’s temperature is driven by Earth scientists’ goal to construct more accurate computer models of our world’s climate. Over the last 30 years, scientists have observed perturbations (such as El Niño/La Niña and Pacific Warm Pool Oscillations) that occur within the climate system on different time scales, ranging from years to decades. Yet scientists don’t know to what degree changes in the frequency and severity of these phenomena may be due to climate change, or whether they represent the system's natural variability.

"When you look at the signatures of various processes in the climate system you really need to drive the error of SST measurements down to 0.1 or 0.2 of a degree so you can monitor changes on yearly and decadal time scales to understand the mechanisms driving the system," Brown explains. "The mechanisms that cause temperature changes have subtle signatures, over time and space, so you need a high degree of accuracy to determine which mechanisms are causing the change."

MODIS will be particularly helpful in forecasting events like El Niño and La Niña, says Peter Minnett, professor of meteorology and physical oceanography at the University of Miami. According to Minnett, predicting how those temperature anomalies will affect weather patterns around the world requires accuracy at least as fine as one-tenth the size of the anomaly's signal. In the case of El Niño, part of the equatorial Pacific Ocean is about 2-3 degrees warmer than normal, while during La Niña some parts are 1-2 degrees cooler than normal. Thus MODIS meets scientists’ requirement of being accurate to within one-tenth of an El Niño or La Niño signal, thereby permitting earlier detection and more refined study of the events.

"MODIS is better equipped than its predecessors to measure SST in the tropics because it can see through the atmosphere better," Brown notes. "This is the first time specially selected spectral bands have been included to provide clear measurements in moist, tropical atmospheres. SST measurements in the tropics are difficult because of the high levels of water vapor in the atmosphere over the region."

Like all space-based radiometers, MODIS measures the thermal infrared energy (heat basically) radiated from the sea's surface. Yet, the signal from the ocean is modified by its passage through the atmosphere. The degree to which the signal is modified depends upon the chemistry of the overlying atmosphere. Clouds, haze, dust or smoke can interfere with a space-based remote sensor’s ability to accurately measure SST, as can greenhouse gases like water vapor, which is present in abundance in the tropics and strongly absorbs infrared energy and re-radiates it back toward the surface.

MODIS is sensitive to five different wavelengths, or "channels," for measuring SST. Both night and day, the sensor measures the thermal infrared energy escaping the atmosphere at 12 microns and then compares that measurement to how much energy is escaping at 11 microns, allowing scientists to determine how much the atmosphere modifies the signal so they can "correct" the data to more accurately derive SST. This same technique has been used for many years by NOAA’s Advanced Very High Resolution Radiometer (AVHRR).

But, water vapor dominates the atmospheric component of the 11 to 12 micron signal and, therefore, space-based sensors cannot "see" clearly the surface over the tropics, where water vapor is present in abundance. To solve this problem MODIS also has three additional channels between 3.5 and 4 microns for measuring SST at night. MODIS is the first satellite remote sensor to carry these channels.

"MODIS has more channels than its predecessors, telling us far more about the behavior of the atmosphere," Minnett states, "so we know better how to compensate for the atmosphere's effects and we can accurately derive the temperature of the sea surface."

###Launched December 18, 1999, Terra is the flagship of the Earth Observing System series of satellites, part of NASA's Earth Science Enterprise, a long-term research program dedicated to understanding how human-induced and natural changes affect our global environment.

Images, movies and links to additional information can be found at: http://earthobservatory.nasa.gov/Newsroom/SST/


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Terra Measures Sea Surface Temperature With Unprecedented Detail." ScienceDaily. ScienceDaily, 5 March 2002. <www.sciencedaily.com/releases/2002/02/020228072457.htm>.
NASA/Goddard Space Flight Center. (2002, March 5). Terra Measures Sea Surface Temperature With Unprecedented Detail. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2002/02/020228072457.htm
NASA/Goddard Space Flight Center. "Terra Measures Sea Surface Temperature With Unprecedented Detail." ScienceDaily. www.sciencedaily.com/releases/2002/02/020228072457.htm (accessed August 27, 2014).

Share This




More Earth & Climate News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) — Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) — Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) — A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins