Featured Research

from universities, journals, and other organizations

Cancer-Suppressing Protein Is Part Of Amoeba's Compass

Date:
May 31, 2002
Source:
Johns Hopkins Medical Institutions
Summary:
Researchers from the Johns Hopkins School of Medicine have learned that a protein that prevents the formation of cancerous tumors in animals also helps single-celled amoeba determine direction, particularly when moving toward a chemical attractant, an ability of many cell types in more complex creatures.

Researchers from the Johns Hopkins School of Medicine have learned that a protein that prevents the formation of cancerous tumors in animals also helps single-celled amoeba determine direction, particularly when moving toward a chemical attractant, an ability of many cell types in more complex creatures. Reporting in the current issue of the journal Cell, the scientists show that a protein called PTEN goes to the back of the cell when a chemical attractant is sensed, allowing the cell to move purposefully toward the attractant. Because PTEN "brings up the rear," the molecules crucial for allowing the cell to reach out and move forward are restricted to the front of the cell.

Related Articles


"How do cells determine which direction to go to find an attractant? How do they sense the differences in concentration of the chemical, alter their membranes and move forward?" asks Peter Devreotes, Ph.D., professor and director of cell biology in the school's Institute for Basic Biomedical Sciences. "It's a very complex puzzle, and we've found another piece."

Postdoctoral fellow Miho Iijima, Ph.D., and Devreotes used specially labeled versions of PTEN that glowed green to see where the protein is in the cell during movement of living amoeba. They also monitored the movement and sensing abilities of amoeba whose PTEN gene was removed or altered.

"PTEN is found only in the back of the cell in moving amoeba, and is actually attached to the cell's membrane," says Devreotes. "Without PTEN or without it attached properly, the amoeba couldn't determine direction as well. Instead of moving in a straight line and adjusting quickly if the source of the attractant is moved, cells without PTEN have bigger 'fronts' that tugged them in a number of directions at once, impeding their progress."

In the same issue of Cell, other researchers report that another protein is found only in the front of amoeba. The two reports fit well together because PTEN and the other protein, called PI 3-kinase, have opposite functions -- the PI 3-kinase puts a phosphate group on a particular molecule, PTEN takes it back off, Devreotes explains.

The studies also show that this molecule, which is part of the cell membrane, is a key player in amoeba's ability to create a "pseudopod," literally a false foot, to move toward the attractant. While they are still investigating exactly how the molecule's active form, which has the additional phosphate, helps the amoeba move, the new results explain why it is found only at the front of the cell.

When the cell isn't moving, its membrane is made up largely of a two-phosphate version of the molecule, abbreviated PIP2, that helps the membrane keeps its shape. As the cell senses an attractant and needs to move, the kinase up front adds a phosphate group to the molecule, which is then called PIP3. PTEN's presence at the sides and rear of the cell ensures that PIP2 stays PIP2 everywhere else.

Interestingly, PTEN isn't just floating near the membrane at the rear of the cell, but is actually bound to it, Devreotes reports. The results show that PTEN has two critical regions: that responsible for binding to the cell's membrane, and the one that removes a phosphate from PIP3, says Devreotes.

"No one has reported seeing PTEN on the cell membrane before, but we show that its binding to the membrane is crucial to help the cell sense direction," says Devreotes. "Having the correct distribution inside the cell is as important as being able to remove the phosphate group."

In many types of cancer the human version of PTEN is mutated, quite often in the protein's binding region. Based on their observations in amoeba, the researchers suspect those mutations may alter the protein's cellular distribution, adversely affecting its ability to halt cell division, its normal function in human and animal cells.

It's not known if PTEN in human cells is also involved in directional sensing or cell mobility, notes Devreotes, even though it is very similar in sequence to the amoeba's version and also removes phosphate groups from PIP3. If it is, the findings could have implications in understanding the spread of cancer from one part of the body to another, a process known as metastasis.

The studies were supported by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Cancer-Suppressing Protein Is Part Of Amoeba's Compass." ScienceDaily. ScienceDaily, 31 May 2002. <www.sciencedaily.com/releases/2002/05/020531072413.htm>.
Johns Hopkins Medical Institutions. (2002, May 31). Cancer-Suppressing Protein Is Part Of Amoeba's Compass. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2002/05/020531072413.htm
Johns Hopkins Medical Institutions. "Cancer-Suppressing Protein Is Part Of Amoeba's Compass." ScienceDaily. www.sciencedaily.com/releases/2002/05/020531072413.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins