Featured Research

from universities, journals, and other organizations

New Method For "Visualizing" Proteins Reported By Cornell Biomedical Lab, Enabling Broader View Of Genome's Circuitry

Date:
June 20, 2002
Source:
Cornell University
Summary:
A newly established national biomedical center at Cornell University is reporting its first major advance: a new way of measuring, or "visualizing," proteins. The new technique will hasten the transformation of the human genome project's blueprints of life into a comprehensive view of the biochemical and physiological circuitry that interconnect to form entire organisms.

ITHACA, N.Y. -- A newly established national biomedical center at Cornell University is reporting its first major advance: a new way of measuring, or "visualizing," proteins. The new technique will hasten the transformation of the human genome project's blueprints of life into a comprehensive view of the biochemical and physiological circuitry that interconnect to form entire organisms.

Related Articles


The technique, which determines the structure of a protein by measuring the distances between atoms in the molecule at greater separations than previously possible, is an important development, says Jack Freed, professor of chemistry and chemical biology at Cornell, who is director of the National Biomedical Center for Advanced ESR Technology (ACERT), established at Cornell last year by the National Institutes of Health. "This is in the spirit of seeing the whole forest of the protein, whereas before we have been seeing the trees one after another," says Freed.

Freed and his collaborators, Hassane Mchaourab, professor of molecular physiology and biophysics at the Vanderbilt University School of Medicine, and Peter Borbat, associate director of ACERT, report on the new method for protein structure determination in JACS , the Journal of the American Chemical Society (May 22, 2002).

"This technique is potentially very powerful for the investigation of larger protein assemblies and membrane proteins," says Yeon-Kyun Shin, associate professor of biophysics at Iowa State University and a major user of the ACERT facility.

The new method for seeing the structure of the protein uses ESR (electron spin resonance), a technology for studying the bonds, structures, and molecular mechanisms of chemical and biological materials, such as membranes and proteins. Basically, the technique elucidates how molecules move, react and interact with one another. The protein studied for the JACS report, T4 Lysozyme, is one of the proteins of a bacteriophage, or virus, that is parasitic within a bacterium. The protein degrades the bacterial cell wall to enable the virus's exit.

Previously, Freed's group pioneered technology that enables ESR methods to unravel the complex dynamics of biosystems such as proteins and membranes. The research group has adapted this technology, dubbing it DQC (for double quantum coherence), to deliver pulses of microwave radiation in appropriate sequences in order to measure the distances between two spin labels. These are molecular subunits, each containing an unpaired electron, inserted at precise sites in the protein. DQC-ESR "interrogates" the spin labels for their weak interaction, the magnitude of which depends on the distance between them. By measuring such distances, the overall structure of the protein can be revealed.

Until now, protein structure has been determined primarily by two widely used methods: X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. The X-ray method, however, requires crystallization of the protein, and as Freed explains, a protein is not just a single crystal or a frozen object but is in constant flexing and tumbling motion. NMR visualizes the molecule in its normal environment and is based on measuring many small distances between adjacent, or nearly adjacent, atoms, like going from tree to tree. The new technology reported in the JACS paper, which needs only very small amounts of protein, gives researchers a comprehensive view of a the molecule, "like being able to see the topology of the entire forest," says Mchaourab.

He notes that 30 percent of the proteins encoded by a genome and 50 percent of pharmaceutically important receptors are membrane-embedded proteins "that are not so easily studied by the two main structural techniques, X-ray crystallography and NMR."

In a larger context, the new technology will aid "the rush" to transform genome sequencing projects' blueprints into broad views of protein function, says Mchaourab. "Central to this endeavor is structural biology that will transform these one-dimensional strings of DNA sequences into three-dimensional visual frameworks of how catalysis, ion conduction and energy transduction are carried out by proteins," he says. Structural biology and structural genomics are aimed at creating a catalog of the entire complement of unique proteins encoded by a genome.

Notes Mchaourab: "The ability of ACERT to transform this technology into a routine laboratory procedure will allow a whole new set of protein assays [testing and analysis] to emerge."

###

Related World Wide Web site:

o ACERT: http://www.acert.cornell.edu


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "New Method For "Visualizing" Proteins Reported By Cornell Biomedical Lab, Enabling Broader View Of Genome's Circuitry." ScienceDaily. ScienceDaily, 20 June 2002. <www.sciencedaily.com/releases/2002/06/020620074326.htm>.
Cornell University. (2002, June 20). New Method For "Visualizing" Proteins Reported By Cornell Biomedical Lab, Enabling Broader View Of Genome's Circuitry. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2002/06/020620074326.htm
Cornell University. "New Method For "Visualizing" Proteins Reported By Cornell Biomedical Lab, Enabling Broader View Of Genome's Circuitry." ScienceDaily. www.sciencedaily.com/releases/2002/06/020620074326.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins