Featured Research

from universities, journals, and other organizations

New Threat To Commercial Fishing

Date:
August 14, 2002
Source:
University Of Melbourne
Summary:
Commercial fishing practices can reduce genetic diversity in fish populations, possibly threatening their productivity and adaptability to environmental change, new research has found.

Commercial fishing practices can reduce genetic diversity in fish populations, possibly threatening their productivity and adaptability to environmental change, new research has found.

An Australian zoologist now at the University of Melbourne, along with colleagues from the United Kingdom and New Zealand, was the first to record a decline in the genetic diversity of a commercially exploited marine species. Their findings, published in the latest volume of the Proceedings of the National Academy of Sciences, shout a warning that could force a rethink to current fisheries management and the research focus into sustainable fishing.

Dr Greg Adcock analysed the DNA found in scales preserved from two populations of New Zealand snapper collected from the 1950s to 1998. One population had been commercially fished since the late 1800s. The other was a 'virgin' population, being subjected to subsistence and recreational fishing only until the scale collection began.

Adcock and colleagues found that the 'virgin' population from Tasman Bay on New Zealand's South Island had suffered an unexpected decline in genetic diversity, starting from the time it began to be commercially exploited in the 1950s.

The other population, from the North Island's Hauraki Bay, showed no decline in genetic diversity in the nearly 50 years to 1998.

The paper reports that the Tasman Bay's effective population size (the number of fish in the population capable of breeding) is100,000 times fewer than its total number, and several orders of magnitude lower than expected.

"In Tasman Bay, commercial fishing has often reduced total numbers to as low as about one million. This leaves only a few hundred fish to contribute to the next generation, a dangerously low genetic base from which to sustain a population," says Adcock.

"With a high effective population you can retain a large amount of rare genetic variation. Such variation is lost as numbers decline. A rare variant may not play a significant role in the current environment, but if a fish population loses a large number of these genes, such as happened in Tasman Bay, they risk losing the ability to adapt to changes such as global warming, pollution and human induced changes to predator and prey populations," he says.

Adcock points to recent assertions that ocean warming is suspected of causing recruitment failure of cold-adapted North Sea cod.

"Until now nobody suspected that any loss of diversity was happening as it was thought that even in over-fished populations where their numbers are still be in the millions, that there would still be a sufficiently large effective population to prevent declines in genetic diversity," says Adcock.

"A population of several million may actually be in danger of losing genetic variability, which may have long-term consequences," he says.

"Genetic diversity should become a management consideration in many exploited marine species. Many fully exploited or over-fished stocks may be already suffering loss of diversity.

"We don't know yet the minimal level of genetic diversity required to sustain a commercial fishery long-term, but there is enough evidence now to suggest we need to be cautious and begin to reassess our understanding of fishery management and the sustainability of the industry."

To assess the loss of genetic diversity, Adcock and his colleagues studied seven regions of the snapper's chromosomes, known as microsatellite loci, which are highly variable and mutate at high rates.

The high rates of mutation in microsatellites produce the levels of variation required for researchers to work out how long ago two or more populations or species diverged from a common population or ancestor. In this case, Adcock and colleagues used this variation to assess the changes in genetic diversity over time.

The Tasman Bay population showed a significant decline in diversity in six of the seven loci.

To explain why Hauraki Gulf failed to show any loss of genetic diversity, Adcock contends that the genetic variation had already been lost in the early years of intensive fishing, prior to 1950.

"Hauraki Gulf is a larger population than Tasman Bay and should naturally retain more genetic variation. When the study began, however, its variation was lower than Tasman Bay's," he says.

Adcock believes the findings open up exciting possibilities of further research and collaboration with the various fishing industry bodies.

"A close collaboration between fishery biologists, geneticists and the fishing industry would be required to carry out research into the biology and behaviour of marine species and their possible implications for fisheries management and conservation," he says.

Adcock's colleagues from Hull University (UK) were Lorenz Hauser (now at the University of Washington), Julio Bernal Ramirez and Gary Carvalho, and from New Zealand, Peter Smith of the National Institute of Water and Atmospheric Research.


Story Source:

The above story is based on materials provided by University Of Melbourne. Note: Materials may be edited for content and length.


Cite This Page:

University Of Melbourne. "New Threat To Commercial Fishing." ScienceDaily. ScienceDaily, 14 August 2002. <www.sciencedaily.com/releases/2002/08/020814070742.htm>.
University Of Melbourne. (2002, August 14). New Threat To Commercial Fishing. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2002/08/020814070742.htm
University Of Melbourne. "New Threat To Commercial Fishing." ScienceDaily. www.sciencedaily.com/releases/2002/08/020814070742.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins