Featured Research

from universities, journals, and other organizations

From Satellites To Sea: JPL Scientists Map Ocean Eddies

Date:
September 17, 2002
Source:
NASA/Jet Propulsion Laboratory
Summary:
Just as sunlight glints off the ocean's surface, so do radio signals from the constellation of global positioning system (GPS) navigation satellites orbiting Earth. Now, researchers from NASA's Jet Propulsion Laboratory, Pasadena, Calif., have shown that although these reflected signals are very weak, they can be detected by airborne instruments and used to map ocean eddies.

Just as sunlight glints off the ocean's surface, so do radio signals from the constellation of global positioning system (GPS) navigation satellites orbiting Earth. Now, researchers from NASA's Jet Propulsion Laboratory, Pasadena, Calif., have shown that although these reflected signals are very weak, they can be detected by airborne instruments and used to map ocean eddies.

Related Articles


Eddies, which affect shoreline weather and the fishing industry, represent "one of the largest unknowns in Earth's climate models," said JPL physicist Dr. Stephen Lowe. Lowe led two aircraft experiments to test how well GPS could be used for altimetry, or measuring sea-surface height.

Eddies are currents that run in a circular path against the main flow of current. Warm eddies have a higher surface height than the surrounding water, while cool eddies are lower. Ranging from 10 to 100 kilometers (6 to 62 miles) in size, many ocean eddies are either too small or don't last long enough to be spotted by the current generation of satellite ocean altimeters, whose measurements of sea-surface height provide a picture of global circulation. Lowe and his colleagues' goal is to determine whether, in the future, reflected GPS signals could be used to map small ocean circulation features such as eddies from space.

"Eddies are small features with a big impact," said co-author Dr. Yi Chao, a JPL oceanographer. "They're where a lot of ocean physics happens and are an integral part of our climate system. But we don't have enough information about them to include in our models. Coastal eddies also have a major role in regulating the weather near the shore, and they are important for fisheries because they're where fish go to feed. In the open ocean, eddies bring nutrient-rich cold water up to the surface and are an important part of the global carbon cycle."

In the first experiment, designed to collect reflected GPS signals from a variety of terrain, the scientists demonstrated that these signals could be detected and used to calculate ocean height. In the second experiment, planned specifically for ocean altimetry, they showed their technique has the potential to provide ocean-height measurements precise enough to map ocean eddies. The results of the latest experiment appear in the May issue of Geophysical Research Letters.

Today's satellite ocean altimeters, including the U.S.-French Topex/Poseiden and Jason 1 spacecraft, measure sea-surface height by sending a radar pulse to the ocean's surface and timing its return. While they measure ocean surface topography very accurately, to within 2 centimeters (1 inch), they see only the swath of ocean directly beneath them and take 10 days to make a complete map of the global ocean. Since an ocean eddy lasts only a week or two, they may only catch a portion of an eddy's lifespan.

In contrast, an orbiting GPS altimeter would have no radar, making it relatively inexpensive. The receiver would obtain position and timing information from the GPS constellation of satellites and would measure ocean height using the arrival time of GPS signals reflected from the surface. At any single time, it would be able to produce about 10 simultaneous measurements across an area thousands of kilometers wide. A constellation of about 10 such instruments, capable of making up to 100 simultaneous ocean-height measurements, could map ocean eddies globally.

The Global Positioning System is a Department of Defense-controlled navigation system comprised of 28 Earth-orbiting satellites and a network of tracking stations. By measuring the time it takes for signals to travel directly between satellites and receivers, the positions of the satellites and receivers can be determined.

In coming experiments, the JPL researchers will fly their equipment on aircraft at different altitudes and speeds. They'll be making ocean-height measurements and comparing their results with those from other instruments. They also have plans to improve their onboard receiver so that the instrument can be flown on spacecraft.

"Our plan is not to replicate the very precise measurements that Topex/Poseidon and Jason 1 make," said Chao, "but rather to help fill in some of the gaps in time and in coverage by looking between the satellites' ground tracks and close to the shore. We would like to provide a new data set to push the next generation of climate models."

JPL is a division of the California Institute of Technology in Pasadena.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "From Satellites To Sea: JPL Scientists Map Ocean Eddies." ScienceDaily. ScienceDaily, 17 September 2002. <www.sciencedaily.com/releases/2002/09/020916064238.htm>.
NASA/Jet Propulsion Laboratory. (2002, September 17). From Satellites To Sea: JPL Scientists Map Ocean Eddies. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2002/09/020916064238.htm
NASA/Jet Propulsion Laboratory. "From Satellites To Sea: JPL Scientists Map Ocean Eddies." ScienceDaily. www.sciencedaily.com/releases/2002/09/020916064238.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava Inches Closer to Highway

Raw: Lava Inches Closer to Highway

AP (Dec. 21, 2014) — Officials have opened a new road on Hawaii's Big Island for drivers to take care of their daily needs if encroaching lava from Kilauea Volcano crosses a highway and cuts them off from the rest of the island. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Raw: Scuba Diving Santa Off Florida Keys

Raw: Scuba Diving Santa Off Florida Keys

AP (Dec. 20, 2014) — A scuba diving Santa Claus explored the waters of the Florida Keys National Marine Sanctuary. Dive shop owner Spencer Slate makes the dive each year to help raise money for charity. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) — US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) — Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins