Featured Research

from universities, journals, and other organizations

Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified

Date:
September 25, 2002
Source:
North Carolina State University
Summary:
In the first look at the molecular diversity of the starch pathway in maize, research at North Carolina State University has found that - in contrast to the high amount of diversity in many of the maize genes previously studied - there is a general dearth of diversity in this particular pathway.

In the first look at the molecular diversity of the starch pathway in maize, research at North Carolina State University has found that - in contrast to the high amount of diversity in many of the maize genes previously studied - there is a general dearth of diversity in this particular pathway.

Related Articles


That's important, says Dr. Ed Buckler, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) researcher, assistant professor of genetics at NC State and one of the study's lead researchers, because molecular diversity essentially provides scientists and plant breeders the raw materials to make the crop better.

"Starch is the main product of maize, and is one of the pathways we want to change the most," Buckler says. "People want to use corn for sweeteners, ethanol production and processed food needs. But some of the genes in the starch pathway cannot be manipulated any more by normal breeding."

Buckler and colleagues at NC State and the University of California, Irvine, publish their findings in the Oct. 1 issue of Proceedings of the National Academy of Sciences. The online version of the paper was released on Sept. 20.

In an interesting side note to the research on diversity in maize's starch pathway, the team also conclusively identified the single nucleotide - or structural unit of a nucleic acid - responsible for the production of sweet corn in the United States. Previous research by Dr. Martha James at Iowa State University had narrowed the possibilities down to two nucleotides, according to Buckler. Sweet corn was one of the first mutations discovered in the field of genetics; that discovery occurred about 100 years ago, Buckler says.

"Currently, the identification of the U.S. sweet corn mutation is of historical and basic research interest, but in the future it could help lead to a sweet corn with a good balance of sweetness, creaminess and germination ability," Buckler said.

Buckler says limited diversity in starch and perhaps other, yet-to-be-studied maize pathways make it harder for plant breeders to increase yields of the popular crop. Therefore, to further increase yields, diversity of these important pathways must also be increased.

He adds that there are essentially three ways to solve the problem of low diversity in maize's starch pathway: crossing maize with pollen from its wild relative, teosinte; searching for and extracting important genetic material from Latin or South American maize; or using transgenics, or genetic engineering.

Each possibility's rewards come with risks, however. Teosinte's yield is not very high, so crossing it with maize would not be immediately useful; searching for diversity in "foreign" maize may not yield the necessary genetic diversity to improve U.S. maize; and genetic engineering is often met with resistance, especially from consumers.

In the paper, Buckler and his colleagues suggest an alternative. "One efficient method may be to take alleles, or genetic variants, from selected genomic regions or genes in teosinte, which has lots of diversity, and incorporate them into maize," Buckler says. This type of work has been done with the tomato and has yielded positive results, he adds.

Buckler's research is supported by the National Science Foundation and the USDA-ARS.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified." ScienceDaily. ScienceDaily, 25 September 2002. <www.sciencedaily.com/releases/2002/09/020925064412.htm>.
North Carolina State University. (2002, September 25). Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2002/09/020925064412.htm
North Carolina State University. "Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified." ScienceDaily. www.sciencedaily.com/releases/2002/09/020925064412.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lioness Has Rare Five-Cub Litter

Raw: Lioness Has Rare Five-Cub Litter

AP (Mar. 27, 2015) — A lioness in Pakistan has given birth to five cubs, twice the usual size of a litter. Queen gave birth to two other cubs just nine months ago. (March 27) Video provided by AP
Powered by NewsLook.com
Jockey Motion Tracking Reveals Racing Prowess

Jockey Motion Tracking Reveals Racing Prowess

Reuters - Innovations Video Online (Mar. 26, 2015) — Using motion tracking technology, researchers from the Royal Veterinary College (RVC) are trying to establish an optimum horse riding style to train junior jockeys, as well as enhance safety, health and well-being of both racehorses and jockeys. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Bear Cubs Tumble for the Media

Bear Cubs Tumble for the Media

Reuters - Light News Video Online (Mar. 26, 2015) — Two Andean bear cubs are unveiled at the U.S. National Zoo in Washington, D.C. Alicia Powell reports. Video provided by Reuters
Powered by NewsLook.com
Botswana Talks to End Illegal Wildlife Trade

Botswana Talks to End Illegal Wildlife Trade

AFP (Mar. 25, 2015) — Experts are gathering in Botswana to try to end the illegal wildlife trade that is decimating populations of elephants, rhinos and other threatened species. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins