Featured Research

from universities, journals, and other organizations

Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified

Date:
September 25, 2002
Source:
North Carolina State University
Summary:
In the first look at the molecular diversity of the starch pathway in maize, research at North Carolina State University has found that - in contrast to the high amount of diversity in many of the maize genes previously studied - there is a general dearth of diversity in this particular pathway.

In the first look at the molecular diversity of the starch pathway in maize, research at North Carolina State University has found that - in contrast to the high amount of diversity in many of the maize genes previously studied - there is a general dearth of diversity in this particular pathway.

Related Articles


That's important, says Dr. Ed Buckler, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) researcher, assistant professor of genetics at NC State and one of the study's lead researchers, because molecular diversity essentially provides scientists and plant breeders the raw materials to make the crop better.

"Starch is the main product of maize, and is one of the pathways we want to change the most," Buckler says. "People want to use corn for sweeteners, ethanol production and processed food needs. But some of the genes in the starch pathway cannot be manipulated any more by normal breeding."

Buckler and colleagues at NC State and the University of California, Irvine, publish their findings in the Oct. 1 issue of Proceedings of the National Academy of Sciences. The online version of the paper was released on Sept. 20.

In an interesting side note to the research on diversity in maize's starch pathway, the team also conclusively identified the single nucleotide - or structural unit of a nucleic acid - responsible for the production of sweet corn in the United States. Previous research by Dr. Martha James at Iowa State University had narrowed the possibilities down to two nucleotides, according to Buckler. Sweet corn was one of the first mutations discovered in the field of genetics; that discovery occurred about 100 years ago, Buckler says.

"Currently, the identification of the U.S. sweet corn mutation is of historical and basic research interest, but in the future it could help lead to a sweet corn with a good balance of sweetness, creaminess and germination ability," Buckler said.

Buckler says limited diversity in starch and perhaps other, yet-to-be-studied maize pathways make it harder for plant breeders to increase yields of the popular crop. Therefore, to further increase yields, diversity of these important pathways must also be increased.

He adds that there are essentially three ways to solve the problem of low diversity in maize's starch pathway: crossing maize with pollen from its wild relative, teosinte; searching for and extracting important genetic material from Latin or South American maize; or using transgenics, or genetic engineering.

Each possibility's rewards come with risks, however. Teosinte's yield is not very high, so crossing it with maize would not be immediately useful; searching for diversity in "foreign" maize may not yield the necessary genetic diversity to improve U.S. maize; and genetic engineering is often met with resistance, especially from consumers.

In the paper, Buckler and his colleagues suggest an alternative. "One efficient method may be to take alleles, or genetic variants, from selected genomic regions or genes in teosinte, which has lots of diversity, and incorporate them into maize," Buckler says. This type of work has been done with the tomato and has yielded positive results, he adds.

Buckler's research is supported by the National Science Foundation and the USDA-ARS.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified." ScienceDaily. ScienceDaily, 25 September 2002. <www.sciencedaily.com/releases/2002/09/020925064412.htm>.
North Carolina State University. (2002, September 25). Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2002/09/020925064412.htm
North Carolina State University. "Maize's Starch Pathway Found Limited; Sweet Corn Nucleotide Also Identified." ScienceDaily. www.sciencedaily.com/releases/2002/09/020925064412.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins