Featured Research

from universities, journals, and other organizations

Researchers Determine How "Hospital Staph" Resists Antibiotics

Date:
October 22, 2002
Source:
Howard Hughes Medical Institute
Summary:
Structural studies of a key enzyme have revealed how dangerous strains of the bacterium, Staphylococcus aureus, become resistant to antibiotics.

Structural studies of a key enzyme have revealed how dangerous strains of the bacterium, Staphylococcus aureus, become resistant to antibiotics.

Resistant strains of Staphylococcus aureus, which are also called "hospital staph" because of their prevalence in hospitals, constitute 34 percent of the clinical isolates in the United States, more than 60 percent in Japan, Singapore and Taiwan, and more than 50 percent in Italy and Portugal. And the emergence of strains of Staphylococcus that are resistant to vancomycin -- the antibiotic of last resort -- makes public health concerns about drug- resistant strains of the bacterium even more urgent.

In an article published online on October 21, 2002, in the journal Nature Structural Biology, Daniel Lim and Natalie Strynadka, who is a Howard Hughes Medical Institute international research scholar, reported structural studies of the enzyme known as penicillin-binding protein 2A (PBP2a). Lim and Strynadka are at the University of British Columbia.

Before the advent of drug-resistant strains of Staphylococcus aureus, staph infections were treated using beta-lactam antibiotics such as methicillin, which block the bacterial enzyme PBP. This enzyme -- called a transpeptidase -- normally catalyzes the cross-linking of structural molecules in the bacterial cell wall. Blocking PBP with methicillin weakens the cell wall, which ultimately bursts, killing the bacterium.

However, a methicillin-resistant strain of the bacteria has evolved that has acquired the gene for a new version of PBP -- PBP2a --from another bacterium. The challenge, as well as the opportunity, said Strynadka, is to understand why PBP2a is resistant to beta-lactam antibiotics.

"What is very attractive from a therapeutic point of view is that PBP2a constitutes a single target, in terms of developing new antibiotics that can overcome this resistance," she said.

To understand the detailed structure of PBP2a, Lim produced a version of the enzyme that lacked a segment that anchored it to the cell membrane, but which retained the enzyme's catalytic activity. Eliminating the anchoring segment rendered the protein soluble, so that the researchers could crystallize the protein for use in x-ray crystallography studies. In x-ray crystallography, researchers direct an x-ray beam through crystals of a protein to deduce its structure by analyzing the pattern of diffraction that is produced. Analysis by Lim and Strynadka revealed critical differences between the structures of PBP2a and other beta-lactam antibiotic sensitive PBPs.

"By comparing the native enzyme with previously known structures of transpeptidases, we came to understand that PBP2a had evolved distortions of the active site that prevent an effective reaction with the antibiotic," said Strynadka. An enzyme's active site is the pocket within which the enzyme carries out its catalytic reaction. In the case of PBP2a, this catalytic reaction drives the essential cross-linking of cell-wall proteins in the bacterium.

"Although beta-lactam-sensitive bacteria still have a number of these normal transpeptidases, they also have PBP2a, which because of its distorted active site doesn't react easily with the antibiotic," said Strynadka. "Thus, PBP2a can produce sufficient cross-linking in the cell wall so that the bacterium survives."

The researchers' studies showed that PBP2a is different from normal PBP's throughout its structure, and not just at the active site. This suggests that the distorted active site is an integral part of the enzyme, said Strynadka. The good news is that the PBP2A active site structure has unique features which can be used to design new types of antibiotics that block its resistance activity.

"The active site of PBP2a is quite extended and relatively hydrophobic," said Strynadka. "The structures we observe now allow for the rational design of specific PB2a inhibitors that are tailored to better fit these features of the PBP2a active site allowing better affinity and inactivation of the enzyme."


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Researchers Determine How "Hospital Staph" Resists Antibiotics." ScienceDaily. ScienceDaily, 22 October 2002. <www.sciencedaily.com/releases/2002/10/021022071006.htm>.
Howard Hughes Medical Institute. (2002, October 22). Researchers Determine How "Hospital Staph" Resists Antibiotics. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2002/10/021022071006.htm
Howard Hughes Medical Institute. "Researchers Determine How "Hospital Staph" Resists Antibiotics." ScienceDaily. www.sciencedaily.com/releases/2002/10/021022071006.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins