Featured Research

from universities, journals, and other organizations

Satellite Images Predict Hantaviral Transmission Risk

Date:
December 4, 2002
Source:
Johns Hopkins University Bloomberg School Of Public Health
Summary:
Researchers from the Johns Hopkins Bloomberg School of Public Health and other institutions report that satellite imagery could be used to determine areas at high-risk for exposure to Sin Nombre virus (SNV), a rodent-born disease that causes the often fatal hantaviral pulmonary syndrome (HPS) in humans.

Researchers from the Johns Hopkins Bloomberg School of Public Health and other institutions report that satellite imagery could be used to determine areas at high-risk for exposure to Sin Nombre virus (SNV), a rodent-born disease that causes the often fatal hantaviral pulmonary syndrome (HPS) in humans.

Related Articles


According to the researchers, satellite imaging detects the distinct environmental conditions that may serve as a refuge for the disease-carrying deer mice. Higher populations of infected deer mice increase the risk of HPS to humans. Their findings are published in the study, “Satellite Imagery Characterizes Local Animal Reservoir Populations of Sin Nombre Virus in Southwestern United States,” which will appear in the December 2, 2002, issue of the Proceedings of the National Academy of Sciences.Gregory E. Glass, PhD, professor of molecular microbiology and immunology in the Johns Hopkins Bloomberg School of Public Health, said, “This is an important finding because, at a practical level, it provides a way to monitor the environment for the risk of an infectious disease before an outbreak occurs. At a more basic level it gives us a way to better understand why outbreaks happen when and where they do.”

Before satellite imaging was used to predict high-risk areas, the only SNV tracking method was through rodent sampling or follow-up to human cases of disease. Johns Hopkins Bloomberg School of Public Health researchers used Landsat Thematic Mapper (TM) satellite data from 1997 and 1998 to identify environments associated with human risk of HPS caused by rodent SNV. LANDSAT 5 TM imagery was obtained for a study area in the southwestern United States where HPS was initially recognized in 1993. The images were processed and HPS risk maps were generated. Logistic regression was used to estimate risk using the digital numbers in each of the three TM bands. The researchers teamed with workers from the University of New Mexico, the Centers for Disease Control and Prevention, and the IBM T.J. Watson Research Center to validate the analysis. Field and laboratory studies of collected rodents were performed in 1998 and 1999. The sample consisted of 15,042 rodents. Researchers tested the deer mice for SNV and then compared their findings to their satellite projected images.

The prevalence of SNV infection in deer mouse populations varied among sites. Researchers found that high-risk sites were ecologically distinct from low-risk sites and SNV infection was prevalent among deer mice in high-risk areas. Woody plants, such as Ponderosa pine and Pinon pine, dominated high-risk sites. Low-risk sites usually contained snakeweed, saltbush, Creosote bush, sagebrush, tumbleweed, and mesquite.

Dr. Glass said, “Future studies could characterize the ecological dynamics of local environmental conditions and monitor SNV transmission in deer mouse populations and then compare theses sites with lower-risk locations. This approach will help identify the environmental determinants of SNV persistence in the environment. The sites may provide important insights into identifying the environmental conditions that lead to increased levels of SNV in reservoir populations and the subsequent increased risk of human disease.”

Joshua B. Fine, DVM, and Timothy M. Shields, MA, with the School’s Department of Molecular Microbiology and Immunology, and Jonathan A. Patz, MD, MPH, with the School’s Department of Environmental Health Sciences, co-authored the study.

Additional co-authors were Terry L. Yates, John B. Kendall, Andrew G. Hope, Cheryl A. Parmenter, C.J. Peters, Thomas G. Ksiazek, Chung-Sheng Li, and James N. Mills.

Research was supported by an Intergovernmental Personnel Agreement from the Centers for Disease Control and NASA. Additional support was received from a cooperative agreement from the U.S. Environmental Protection Agency. Field studies were supported by NOAA and the Museum of Southwestern Biology.


Story Source:

The above story is based on materials provided by Johns Hopkins University Bloomberg School Of Public Health. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University Bloomberg School Of Public Health. "Satellite Images Predict Hantaviral Transmission Risk." ScienceDaily. ScienceDaily, 4 December 2002. <www.sciencedaily.com/releases/2002/12/021203074732.htm>.
Johns Hopkins University Bloomberg School Of Public Health. (2002, December 4). Satellite Images Predict Hantaviral Transmission Risk. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2002/12/021203074732.htm
Johns Hopkins University Bloomberg School Of Public Health. "Satellite Images Predict Hantaviral Transmission Risk." ScienceDaily. www.sciencedaily.com/releases/2002/12/021203074732.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins