Featured Research

from universities, journals, and other organizations

Lichens Are Surprisingly Precise Air Quality Monitors, BYU Father-Son Team Finds

Date:
December 26, 2002
Source:
Brigham Young University
Summary:
Lichens, combinations of fungi and algae, are quietly trodden underfoot by animals and hikers the world over. Now a new study by a Brigham Young University father-son team has demonstrated that lichens could replace expensive environmental monitors since they accumulate some pollutants in concentrations that correctly manifest the amount of the pollutants in the surrounding air.

PROVO, Utah -- Lichens, combinations of fungi and algae, are quietly trodden underfoot by animals and hikers the world over. Now a new study by a Brigham Young University father-son team has demonstrated that lichens could replace expensive environmental monitors since they accumulate some pollutants in concentrations that correctly manifest the amount of the pollutants in the surrounding air.

Related Articles


"Previously, we knew that lichens took things up from the air, but no one had any significant results indicating that what is in the lichen accurately reflects what is in the air," said Larry St. Clair, the chair of BYU's department of integrative biology and co-author of the study published in the latest issue of Atmospheric Environment. "This is the first definitive data that shows not only do lichens take pollution up from the air, but they take it up in patterns that exactly reflect the amount of pollutants in the air."

Lacking roots, stems and leaves, lichens can grow almost anywhere, but rely on nutrients they accumulate from the air. Thus, they are uniquely sensitive to air pollution, making them valuable as early warning indicators of reduced air quality. Scientists have used them as biomonitors for decades, including an effort to estimate the amount of nuclear fallout from the Chernobyl melt down in the late 1980s.

Since St. Clair's son Sam was 6 years old, he has helped his father gather lichen samples from more than 400 sites in the U.S.'s Mountain West from Mexico to Canada. For the new study, the duo focused on lichens collected at Chiricahua National Monument in southeastern Arizona for part of Sam's graduate work in botany at BYU.

Noting significant copper smelting activity in the area, the researchers took advantage of bi-weekly mechanical measurement of copper levels in the ambient air between 1994 and 1998 conducted by scientists at University of California, Davis. The St. Clair pair recorded the levels of copper absorbed by lichens collected at selected sites in the Monument and compared the results to those generated by the machines. The concentration of copper in the lichens reflected the concentration of copper in the air.

"If such relationships are found to be robust in further studies, it would mean that we would be able to predict air quality status by collecting lichen samples and determining their elemental content," said Sam St. Clair, now pursuing a Ph. D. at Pennsylvania State University. "Air quality status could therefore be quantified wherever lichens are present."

Using lichens would eliminate the need for installation and maintenance of expensive and immobile air sampling equipment that collects airborne particulates using filters, which are later removed and analyzed in a lab.

"In essence the lichen tissue appears to functions like a natural filter, accumulating airborne pollutants as they are deposited on the lichen surface," Sam St. Clair said.

The technique for analyzing pollutant elements on a filter or in lichen tissue is the same.

The St. Clairs' paper was co-authored by BYU professors Nolan F. Mangelson and Darrell J. Weber.


Story Source:

The above story is based on materials provided by Brigham Young University. Note: Materials may be edited for content and length.


Cite This Page:

Brigham Young University. "Lichens Are Surprisingly Precise Air Quality Monitors, BYU Father-Son Team Finds." ScienceDaily. ScienceDaily, 26 December 2002. <www.sciencedaily.com/releases/2002/12/021226072410.htm>.
Brigham Young University. (2002, December 26). Lichens Are Surprisingly Precise Air Quality Monitors, BYU Father-Son Team Finds. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2002/12/021226072410.htm
Brigham Young University. "Lichens Are Surprisingly Precise Air Quality Monitors, BYU Father-Son Team Finds." ScienceDaily. www.sciencedaily.com/releases/2002/12/021226072410.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins