Featured Research

from universities, journals, and other organizations

Stay-at-home Microbes: New Study Finds Micro-organisms More Complicated Than We Thought

Date:
July 30, 2003
Source:
University Of Cincinnati
Summary:
A study of microbes that thrive in hot, acidic conditions has overturned a long-held view that species of micro-organisms do not differ by geographic location, like other forms of life.

A study of microbes that thrive in hot, acidic conditions has overturned a long-held view that species of micro-organisms do not differ by geographic location, like other forms of life. The research by the University of Cincinnati and the University of California-Berkeley has just been published in the journal Science.

When it comes to plant life and animal life, a species usually shows genetic differences in different parts of the world. For the tiny form of life known as micro-organisms, the opposite has been considered to be true – they don't tend to differ by geographic location. That long-held view has been convincingly overturned by a study published in the July 24 issue of Science by University of Cincinnati and University of California-Berkeley researchers focusing on a form of life that flourishes in extremely hot conditions.

Co-authors Dennis Grogan of the University of Cincinnati and Rachael J. Whitaker and John W. Taylor of Berkeley provide the most comprehensive proof to date that at least one species of micro-organism in different parts of the world does have genetic differences, if you look close enough. Whitaker, the principal author, focused on the archaeon Sulfolobus, found in acidic hot springs and flourishing at temperatures from 140-180 degrees Fahrenheit. She drew the vast majority of samples for her analysis from an archives developed and stored at the University of Cincinnati Department of Biological Sciences under the leadership of Grogan. Whitaker analyzed the DNA of some 78 cultures from the United States, Eastern Russia and Iceland.

Of those samples, more than 60 came from the University of Cincinnati collection that Grogan has built with the help of National Science Foundation funding as well as the help of undergraduate and graduate students. Micro-organisms From Extreme Environments, a summer course taught by Grogan, involves UC students in laboratory work that "isolates" the archaea samples from hot springs samples and preserves the live cultures in vials stored in freezers. Culturing archaea can be difficult because of the extreme conditions they enjoy.

It was not until the 1970s that Archaea were discovered and classified as one of three domains of life. The other two are bacteria and eukaryota (plants, animals, fungi and protists).

Many archaea survive in "extreme" environments that are "normal" for them, but for other life forms would be lethal or at least injurious. Sulfolobus, for example, flourishes in acidic hot springs – including those found bubbling at Yellowstone. Also known as "extremophiles," these microscopic critters not only thrive in temperatures ranging from 65 to 85 degrees Celsius, but also love acidic conditions with a pH ranging from 2 to 4. The human body, on the other hand, is typically at 98.5 degrees Fahrenheit (37 degrees Celsius) and has a pH of 7.

Because archaea were not even discovered until about 25 years ago, says Grogan, they remain a relatively unknown domain of life. Recently, researchers have hinted that perhaps species of micro-organisms can differ by geographic location, but this study provides the most comprehensive evidence to date of that idea, he adds. The implications for understanding microbial life are far reaching.

"It is important to realize that disease-causing bacteria represent only a tiny fraction of a bewildering diversity of micro-organisms that we can grow in the laboratory. These cultured species, in turn, represent a tiny fraction of the species present in nature that are shaping our environment in ways we don't fully understand. Now microbiologists have yet another level of complexity to consider, namely that differences within a microbial species can arise in different locations," Grogan says. "This process may be increasing the diversity of microbial life in many environments."

Because the hot springs where archaea live can be so dangerous, visitors to places such as Yellowstone are warned to stay on designated walkways. Researchers, including Grogan, must collect samples in areas where tourists won't see them, using special tools for safety. Grogan typically goes into the field to collect samples in June.

The sampling and cultivation work in this study was assisted by the following University of Cincinnati scholars: biological sciences professor Brian Kinkle, graduate student Greg D. Bell and undergraduate student Josh E. Hansen.


Story Source:

The above story is based on materials provided by University Of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University Of Cincinnati. "Stay-at-home Microbes: New Study Finds Micro-organisms More Complicated Than We Thought." ScienceDaily. ScienceDaily, 30 July 2003. <www.sciencedaily.com/releases/2003/07/030725081730.htm>.
University Of Cincinnati. (2003, July 30). Stay-at-home Microbes: New Study Finds Micro-organisms More Complicated Than We Thought. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2003/07/030725081730.htm
University Of Cincinnati. "Stay-at-home Microbes: New Study Finds Micro-organisms More Complicated Than We Thought." ScienceDaily. www.sciencedaily.com/releases/2003/07/030725081730.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) — A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) — Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) — Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins