Featured Research

from universities, journals, and other organizations

Cooperation Is A No-brainer For Symbiotic Bacteria

Date:
September 4, 2003
Source:
University Of California - Davis
Summary:
Some legume plants, which rely on beneficial soil bacteria called rhizobia that infect their roots and provide nitrogen, seem to promote cooperation by exacting a toll on those bacterial strains that don't hold up their end of the symbiotic bargain, according to a team of researchers at the University of California, Davis.

Humans may learn cooperation in kindergarten, but what about bacteria, whose behavior is preprogrammed by their DNA?

Some legume plants, which rely on beneficial soil bacteria called rhizobia that infect their roots and provide nitrogen, seem to promote cooperation by exacting a toll on those bacterial strains that don't hold up their end of the symbiotic bargain, according to a team of researchers at the University of California, Davis.

"In the case of soybeans, it appears that the plant applies sanctions against rhizobia that don't provide nitrogen. The plant does this by decreasing the oxygen supply to the rhizobia," said R. Ford Denison, a crop ecologist in the UC Davis Department of Agronomy and Range Science. "In this way, the host plant can control the environment of the symbiotic bacteria to favor the evolution of cooperation by ensuring that bacterial 'cheaters' reproduce less."

Findings from this study, to be reported in a letter in the Sept. 4 issue of the journal Nature, may one day lead to crops that selectively favor the most productive, beneficial strains of rhizobia, thus making optimal use of naturally available nitrogen.

Scientists have long been intrigued by the cooperative relationships between certain legumes -- peas, soybeans and alfalfa -- and the soil bacteria that "fix," or convert, nitrogen from the air into a form that can be used by the plant. While the rhizobia produce nitrogen for the plant, the plant returns the favor by providing nutrients necessary for the growth and reproduction of the bacteria.

Such mutually beneficial relationships are common in nature and would be easier to understand if there were only one bacterial strain associated with the plant. But there are often several competing strains interacting with the plant, and not all of those strains fix nitrogen at the same rate.

Why wouldn't the bacteria that don't expend energy and resources on fixing nitrogen for the plant be fitter because they have more resources available for their own growth and reproduction? Wouldn't the bacterial species that dutifully provide the plant with nitrogen eventually lose out to their goldbricking cousins that aren't doing so?

Denison and colleagues suspected that the plants were somehow penalizing rhizobial species that "cheat" on the symbiotic relationship by fixing little or no nitrogen for the plant. To test that hypothesis, they altered the atmospheric conditions surrounding soybean root nodules containing the rhizobia. By replacing the air with a nitrogen-free argon-and-oxygen mixture, they reduced the rhizobia's ability to fix nitrogen to just 1 percent of normal -- forcing the bacteria to shirk their nitrogen-fixing duties.

The researchers observed the impact of this simulated rhizobial cheating on whole soybean plants, on root systems split in half and grown in different atmospheres, and on individual root nodules.

They discovered that the plants appeared to retaliate by decreasing the supply of oxygen to the root nodules inhabited by the rhizobial species that failed to fix nitrogen. They also found that nitrogen-fixing populations consistently grew to larger numbers over time, perhaps because they had access to more oxygen. The root nodules inhabited by nitrogen-fixing rhizobia grew more, so they cost the plant more but not relative to the benefits they provided to the plant.

"The data illustrate that the soybean plants selectively reward or punish their symbiotic bacteria, based on the amount of nitrogen they provide to the plant hosts," Denison said. "This mechanism helps explain why this ancient cooperation between the plant and various rhizobial strains hasn't already broken down."

He noted that such breakdown in cooperation between species can have serious consequences, as in the case of coral bleaching that results when algae leave or are expelled from the coral.

Collaborating with Denison on this study were E. Toby Kiers and Robert A. Rousseau of UC Davis' Department of Agronomy and Range Science, and Stuart A. West of the Institute of Cell, Animal & Population Biology at the University of Edinburgh.

Funding for the study was provided by the National Science Foundation, the California Agricultural Experiment Station, the Land Institute, the Royal Society, the Biotechnology and Biological Sciences Research Council, the Natural Environment Research Council and the UC Davis Department of Agronomy and Range Science.


Story Source:

The above story is based on materials provided by University Of California - Davis. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Davis. "Cooperation Is A No-brainer For Symbiotic Bacteria." ScienceDaily. ScienceDaily, 4 September 2003. <www.sciencedaily.com/releases/2003/09/030904074852.htm>.
University Of California - Davis. (2003, September 4). Cooperation Is A No-brainer For Symbiotic Bacteria. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2003/09/030904074852.htm
University Of California - Davis. "Cooperation Is A No-brainer For Symbiotic Bacteria." ScienceDaily. www.sciencedaily.com/releases/2003/09/030904074852.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins