Featured Research

from universities, journals, and other organizations

Nanotubes Surprise Again: Ideal Photon Emission

Date:
September 8, 2003
Source:
University Of Rochester
Summary:
Carbon nanotubes, recently created cylinders of tightly bonded carbon atoms, have dazzled scientists and engineers with their seemingly endless list of special abilities--from incredible tensile strength to revolutionizing computer chips. In the latest issue of Science, two University of Rochester researchers add another feat to the nanotubes' list: ideal photon emission.

Sept 5, 2003 -- Carbon nanotubes, recently created cylinders of tightly bonded carbon atoms, have dazzled scientists and engineers with their seemingly endless list of special abilities--from incredible tensile strength to revolutionizing computer chips. In today's issue of Science, two University of Rochester researchers add another feat to the nanotubes' list: ideal photon emission.

Related Articles


"The emission bandwidth is as narrow as you can get at room temperature," says Lukas Novotny, professor of optics at Rochester and co-author of the study. Such a narrow and steady emission can make such fields as quantum cryptography and single-molecule sensors a practical reality.

The emission profile came as a surprise to Todd Krauss, assistant professor of chemistry at the University, and Novotny. They had set out to simply define the emission, or fluorescence, of a single carbon nanotube. By using a technique called confocal microscopy, the team illuminated a single nanotube with a strongly focused laser beam. The tube absorbed the light from the laser and then re-emitted light at new frequencies that carried information about the tube's physical characteristics and its surroundings.

The light emitted from the nanotube was in precise, discrete wavelengths, unlike most objects like molecules that radiate into a broader (i.e. more "fuzzy") range of wavelengths at room temperature.

But a greater surprise was in store for the team.

"The emission wasn't just perfectly narrow, it was steady as far as we could measure," says Krauss. In a strange quirk of quantum physics, molecules usually emit their photons for a certain time and then cease, only to resume again later, like a telegraph signal. The tubes that Krauss and Novotny measured, however, remained steady beacons to the limits of their instruments' sensitivity. "This is very exciting because for any application in quantum optics, you want a steady and precise photon emitter," says Novotny.

Narrow emissions and a complete absence of blinking have tempting implications for single photon emitters--devices needed to dependably release a single photon on command. The U.S. Department of Defense is very interested in developing quantum cryptography, a theoretically unbreakable method of coding information, which necessitates a reliable way to deliver single photons on demand.

Other applications come in the form of sensors so sensitive they can detect a single molecule of a substance. For example, when a biological molecule such as a protein binds to a nanotube, the nanotube's perfect emission changes, revealing the presence and characteristics of the molecule. Detecting the change would be impossible if it weren't for the remarkably steady nature of the nanotube emission, because a researcher wouldn't know for certain if a sudden change in the emission was just a blink, or was meant to indicate the presence of the target molecule.

Until just a few months ago, determining the emission characteristics of a nanotube was impossible. Carbon nanotubes cannot be made individually-rather they come as a jumble like a pile of spaghetti. Trying to measure the photon emission of a tube in the jumble is impossible because the tube will pass the photons it absorbs to other tubes instead of re-emitting them in its telltale fashion. What scientists end up with is a sort of average of what the collection of tubes will emit--not the emission characteristics of a single tube. Only within the past few months have researchers figured out how to remove a single nanotube from the pile of spaghetti in order to study its properties as an individual.

Krauss and Novotny are now devising experiments to test the steadiness of the nanotube fluorescence beyond the range of the initial experiments, and are pursuing studies aimed at determining the ultimate minimum possible emission bandwidth at ultracold temperatures.

This work was funded by the National Science Foundation, the U.S. Department of Energy, the Research Corporation, and the New York State Office of Science and Academic Research.


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "Nanotubes Surprise Again: Ideal Photon Emission." ScienceDaily. ScienceDaily, 8 September 2003. <www.sciencedaily.com/releases/2003/09/030908071830.htm>.
University Of Rochester. (2003, September 8). Nanotubes Surprise Again: Ideal Photon Emission. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2003/09/030908071830.htm
University Of Rochester. "Nanotubes Surprise Again: Ideal Photon Emission." ScienceDaily. www.sciencedaily.com/releases/2003/09/030908071830.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Forensic Holodeck Creates 3D Crime Scenes

Forensic Holodeck Creates 3D Crime Scenes

Reuters - Innovations Video Online (Mar. 3, 2015) A holodeck is no longer the preserve of TV sci-fi classic Star Trek, thanks to researchers from the Institute of Forensic Medicine Zurich, who have created what they say is the first system in the world to visualise the 3D data of forensic scans. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Everything You Need To Know About Mobile Payments In 2015

Everything You Need To Know About Mobile Payments In 2015

Newsy (Mar. 2, 2015) This year, mobile payments might finally catch on. Here are the things you need to know to stay on top of the latest developments. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins