Featured Research

from universities, journals, and other organizations

UCSD Researchers Find Promising New Avenues For Treating Infections

Date:
October 3, 2003
Source:
University Of California - San Diego
Summary:
A study by University of California, San Diego biochemists explains why infections of Pseudomonas bacteria, which affect 200,000 hospitalized patients each year in the United States, can be so dangerous to cells within the body, and points to new ways to treat those infections.

A study by University of California, San Diego biochemists explains why infections of Pseudomonas bacteria, which affect 200,000 hospitalized patients each year in the United States, can be so dangerous to cells within the body, and points to new ways to treat those infections.

Pseudomonas aeruginosa, a common bacterium, can infect nearly every part of the body and produces toxins that damage tissues. In the study to be published in the October 17th issue of the Journal of Biological Chemistry, the researchers report that when the bacterium injects a toxin called "ExoU" with a tiny needle-like structure into cells, the toxin degrades phospholipids-greasy molecules that are a key component of cell membranes. They also found that chemicals known to block proteins that degrade phospholipids could save cells that would otherwise die. An early on-line version of the paper is available at http://www.jbc.org/cgi/reprint/M302472200v2.

"We have found that the toxin, which is associated with 90 percent of the severe cases of Pseudomonas infections, kills cells by targeting a component of the cell membrane," says Partho Ghosh, a professor of chemistry and biochemistry in UCSD's Division of Physical Sciences who headed the research team. "We have been able to identify chemicals that protect cells from the effects of the toxin, raising the possibility of a novel mode of treatment for these infections."

P. aeruginosa are widespread and, while these bacteria rarely affect healthy people, they are a serious problem for cystic fibrosis, AIDS, burn and chemotherapy patients and others with weakened immune systems. For example, 50 percent of deaths from AIDS are associated with P. aeruginosa infections and these bacteria are the leading cause of pneumonia contracted in intensive care units.

Furthermore, treating these infections is often problematic due to the antibiotic resistance of the bacteria. So the researchers wanted to better understand how the toxin killed cells in the hope that such insight would lead to alternative treatments for the infections.

"We knew that these bacteria use a needle-like structure to inject toxin directly into mammalian cells," explains Ghosh. "But we didn't know the mechanism by which the toxin induced cell death."

Three of their findings suggested that the ExoU toxin degrades cell membrane phospholipids. There were key similarities in the sequence of amino acids-building blocks that make up proteins-between the toxin and proteins known to degrade phospholipids. In addition, by attaching a fluorescent "tag" to the toxin, the researchers were able to see that ExoU injected into the cell ends up at the cell membrane. Finally, they found that chemical inhibitors of phospholipid degrading proteins protected cells from the toxin.

However, they also discovered that ExoU is not able to degrade phospholipids on its own, and that within cells, the toxin localizes to distinct regions of the inner cell membrane. Since phospholipids are spread throughout the cell membrane, this observation is consistent with the idea that the toxin is interacting with a specific factor, other than phospholipids, at the cell membrane.

"These results suggest that the toxin is inactive until it enters into mammalian cells, where it becomes activated through interaction with one or more host cell factors," explains Ghosh.

"We are currently looking for this activator in mammalian cells," says Rebecca Phillips, graduate student in the Ghosh lab and the first author on the paper. "It may be possible to find a drug which prevents this interaction and protects cells from the toxin."

The researchers are looking for multiple alternatives to treating the infection because it is still not clear that inhibitors of phospholipid degrading proteins can successfully treat ill patients, even if these chemicals seemed promising in the isolated mammalian cells the researchers used in their studies. This is because mammalian cells have their own proteins responsible for degrading phospholipids, which are needed for normal cell maintenance and repair. However, the researchers remain optimistic.

"It is definitely a possibility that we can find chemicals that are specific for the toxin and won't affect mammalian cells," says Phillips. "We are currently working to determine more detailed information about the molecular structure of the toxin, which will be useful in designing more specific drugs."

Other contributors to this work included Edward Dennis, a chemistry and biochemistry professor in UCSD's Division of Physical Sciences and UCSD's School of Medicine and David Six, a former graduate student in the Dennis lab. The research project was supported by the Cystic Fibrosis Foundation, National Institutes of Health and a Keck Distinguished Young Scholar in Medicine Award.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "UCSD Researchers Find Promising New Avenues For Treating Infections." ScienceDaily. ScienceDaily, 3 October 2003. <www.sciencedaily.com/releases/2003/10/031003060442.htm>.
University Of California - San Diego. (2003, October 3). UCSD Researchers Find Promising New Avenues For Treating Infections. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2003/10/031003060442.htm
University Of California - San Diego. "UCSD Researchers Find Promising New Avenues For Treating Infections." ScienceDaily. www.sciencedaily.com/releases/2003/10/031003060442.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins