Featured Research

from universities, journals, and other organizations

Canadian Forest Fires Affect Mercury Levels In The Northeastern United States

Date:
October 9, 2003
Source:
American Chemical Society
Summary:
Fires in the Canadian boreal forest may be contributing significant amounts of mercury to the atmosphere above the northeastern United States. New research from scientists at Yale and Harvard shows that a huge fire in northern Quebec in July 2002 sent a pulse of mercury to a site in rural Massachusetts, providing clear evidence that mercury was transported over long distances in the resulting plume of smoke.

Fires in the Canadian boreal forest may be contributing significant amounts of mercury to the atmosphere above the northeastern United States. New research from scientists at Yale and Harvard shows that a huge fire in northern Quebec in July 2002 sent a pulse of mercury to a site in rural Massachusetts, providing clear evidence that mercury was transported over long distances in the resulting plume of smoke.

The researchers also used this data to estimate annual emissions from Canadian forests and the worldwide boreal forest. The findings are in the Sept. 29 issue of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world's largest scientific society.

The boreal forest, also known as the taiga, nearly encircles the globe just below the Arctic Circle. It stretches across North America and Eurasia and constitutes about a third of Earth's total forest area.

In July 2002, a series of widespread fires swept the Canadian boreal forest north of Montreal, Quebec. The plume of smoke blanketed the entire region, enveloping the city of Montreal and affecting visibility as far south as Virginia.

"Simultaneously, our research group monitored atmospheric mercury levels at a rural site in Massachusetts," says Jeff Sigler, a Ph.D. candidate at Yale University and lead author of the study. "We detected a large increase in mercury at this site coincident with the smoke plume." The vast plume allowed the researchers to clearly link mercury from the fire to mercury at the test site, more than 500 miles away at Harvard Forest in Petersham, Mass.

The measurements provide the first clear evidence that Canadian forest fires may significantly increase levels of atmospheric mercury in the northeastern United States, which is under more mercury stress than any other region in the country, according to the U.S. Environmental Protection Agency.

Although mercury is a natural element that is abundant throughout the environment, roughly half of it is anthropogenic — from human sources — mainly from burning coal for electricity.

While mercury, both naturally occurring and anthropogenic, is not typically a health concern in soil and vegetation, a fire releases mercury from the trees and forest floor to the atmosphere, where it can be transported to other locations. Atmospheric mercury can stay in the air for up to two years, circling the globe and eventually depositing in remote bodies of water, where it transforms to a highly toxic form that builds up in fish.

"Its primary health risk to humans is from ingestion of fish," Sigler says, "but much of the mercury contained in fish is ultimately linked to removal from the atmosphere."

The subarctic boreal forest is rife with evergreen trees, such as black spruce and jack pine. The trees' needle-like foliage is filled with a resinous "antifreeze" to prevent frost damage. The resin burns well, and when the thick litter layer that forms on the forest floor ignites, substantial forest fires can occur. These fires are highly sporadic in nature, which implies that boreal fires can cause occasional large pulses in atmospheric mercury levels, according to Sigler.

"We used existing data to determine a ballpark estimate of mercury emissions, not only from this fire event, but also from the Canadian and global boreal zone on an average, annual basis," Sigler says. The researchers estimate that Canadian forest fires may emit about 3.5 tons of mercury each year, and boreal forest fires worldwide about 22.5 tons.

In Canada, industrial sources of mercury are much fewer, so the effects of mercury from forest fires may be even more important. "Our results imply that typically, mercury emissions from Canadian boreal fires may be equivalent to as much as 30 percent of the total Canadian anthropogenic emissions, and during a year characterized by very intense burning, may be as much as 100 percent," Sigler says.

"Canadian forest fires are known to cause enhancements in pollutants such as carbon monoxide and nitrogen oxides in the United States," according to Sigler. "Modeling the trajectories of air masses during the event and correlating the mercury increase with dramatic enhancements in carbon monoxide levels allowed us to clearly link the mercury enhancement to the fire plume."

Other studies of mercury from forest fires have been done on a laboratory scale or by taking spot measurements in small portions of a forest, but this is the first study to focus on a large-scale fire.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Canadian Forest Fires Affect Mercury Levels In The Northeastern United States." ScienceDaily. ScienceDaily, 9 October 2003. <www.sciencedaily.com/releases/2003/10/031009063249.htm>.
American Chemical Society. (2003, October 9). Canadian Forest Fires Affect Mercury Levels In The Northeastern United States. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2003/10/031009063249.htm
American Chemical Society. "Canadian Forest Fires Affect Mercury Levels In The Northeastern United States." ScienceDaily. www.sciencedaily.com/releases/2003/10/031009063249.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins