Featured Research

from universities, journals, and other organizations

Mathematical Modeling Predicts Cellular Communication

Date:
October 15, 2003
Source:
Public Library Of Science
Summary:
From the moment its life begins, the fate of a multicellular organism depends on how well its cells communicate. Proteins act as molecular switchboard operators to keep the lines of communication open and the flow of cellular messages on track. But charting the protein interactions, signaling pathways, and other elements that regulate these networks is no small feat.

From the moment its life begins, the fate of a multicellular organism depends on how well its cells communicate. Proteins act as molecular switchboard operators to keep the lines of communication open and the flow of cellular messages on track. But charting the protein interactions, signaling pathways, and other elements that regulate these networks is no small feat. There are many players that interact in complicated ways. Furthermore, these efforts have been hampered by the lack of quantitative data--measurements of signal duration, amplitude, and fluctuation--on these regulatory pathways.

Related Articles


In a tour de force combination of mathematical modeling and precise quantitative measurements, Marc Kirschner, of Harvard Medical School, and Reinhart Heinrich, of Humboldt University, Berlin, and colleagues focused their efforts on a well-studied signaling pathway--the Wnt pathway, which plays a role both in various stages of embryonic development and in carcinogenesis. Like most signaling pathways, Wnt is highly conserved. Consequently, developing tools that elucidate the Wnt pathway will not only provide insights into this important pathway but have implications for understanding communication pathways in animals from jellyfish to humans.

In order to develop their model model, the authors needed to know the concentrations of the various signaling components. What they found surprised them. When they measured the concentrations of the principal scaffold proteins (which bring other components in a pathway together by providing an interaction surface), axin and APC, they found that these two proteins were present in dramatically different concentrations, with axin at very low levels relative to the other signaling components and APC at similar concentrations to other signaling components. With this information in hand, and after a series of refinements based on additional experiments, they were able to develop a model that could not only simulate the behavior of the main players in the pathway--both in the absence and presence of a Wnt signal--but which also suggested why the two scaffold proteins are present in different concentrations: the low level of axin here may help the pathways retain their modularity, preventing the Wnt pathway from interfering with the other pathways.

These findings demonstrate that modeling can offer powerful new insights into the workings of complex signaling systems, cutting through the static to pick up important signals even in those pathways that are well understood. The results have important implications for developmental biology and human disease: The Wnt pathway is often activated during carcinogenesis--and mutations in several of these signaling proteins have been linked to colon cancer--suggesting that cancer can develop when signals in the Wnt circuitry somehow get crossed. By predicting how quantitative factors may influence the behavior of signaling networks, mathematical models such as this could shed light on the role that breakdowns in cellular communication play in carcinogenesis. The researchers argue that future attempts to characterize these complex networks must incorporate quantification measurements, and their modeling efforts suggest ways to do that.

###

Link: http://www.plos.org/downloads/plbi-01-01-lee-salic-kruger.pdf.


Story Source:

The above story is based on materials provided by Public Library Of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library Of Science. "Mathematical Modeling Predicts Cellular Communication." ScienceDaily. ScienceDaily, 15 October 2003. <www.sciencedaily.com/releases/2003/10/031015031202.htm>.
Public Library Of Science. (2003, October 15). Mathematical Modeling Predicts Cellular Communication. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2003/10/031015031202.htm
Public Library Of Science. "Mathematical Modeling Predicts Cellular Communication." ScienceDaily. www.sciencedaily.com/releases/2003/10/031015031202.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Forensic Holodeck Creates 3D Crime Scenes

Forensic Holodeck Creates 3D Crime Scenes

Reuters - Innovations Video Online (Mar. 3, 2015) A holodeck is no longer the preserve of TV sci-fi classic Star Trek, thanks to researchers from the Institute of Forensic Medicine Zurich, who have created what they say is the first system in the world to visualise the 3D data of forensic scans. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Everything You Need To Know About Mobile Payments In 2015

Everything You Need To Know About Mobile Payments In 2015

Newsy (Mar. 2, 2015) This year, mobile payments might finally catch on. Here are the things you need to know to stay on top of the latest developments. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins