Featured Research

from universities, journals, and other organizations

Cornell Researchers' Probe Discovers Pollutant-eating Microbe And A Strategy To Speed Cleanup Of Old Gasworks

Date:
October 28, 2003
Source:
Cornell University News Service
Summary:
Cornell University microbiologists, looking for bioremediation microbes to "eat" toxic pollutants, report the first field test of a technique called stable isotopic probing (SIP) in a contaminated site. And they announce the discovery and isolation of a bacterium that biodegrades naphthalene in coal tar contamination.

ITHACA, N.Y. -- Cornell University microbiologists, looking for bioremediation microbes to "eat" toxic pollutants, report the first field test of a technique called stable isotopic probing (SIP) in a contaminated site. And they announce the discovery and isolation of a bacterium that biodegrades naphthalene in coal tar contamination.

Although naphthalene is not the most toxic component in coal tar, the microbiologists say their discovery might eventually help to speed the cleanup of hundreds of 19th and 20th century gasworks throughout the United States where the manufacture of gas from coal for homes and street lighting left a toxic legacy in the ground.

The National Science Foundation-funded research is reported in the online edition of Proceedings of the National Academy of Sciences (PNAS early edition, Oct. 27, 2003) by researchers working at the NSF Microbial Observatory at Cornell.

The naphthalene-eating bacterium, Polaromonas naphthalenivorans strain CJ2, was discovered in a 40-year-old municipal gasworks coal tar disposal site in South Glens Falls, N.Y., near the west bank of the Hudson River.

"Strain CJ2 alone won't solve the coal tar problem because naphthalene is only one of the many organic chemicals involved. That's why we're going back to look for other microorganisms -- perhaps with similar gene sequences -- that might be biodegrading other toxins," says the article's lead author, Eugene L. Madsen, associate professor of microbiology in Cornell's College of Agriculture and Life Sciences. He says that naphthalene's carcinogenic relatives in coal tar, known as polycylic aromatic hydrocarbons, are toxins that his research group hopes to degrade.

The use of SIP to identify pollutant-eating microbes is something like using the milk-mustache test to discover which child drank the milk. In the first successful field application of SIP in a contaminated site, the microbiologists released into the Hudson River coal tar waste a small amount of naphthalene-containing carbon-13, a stable isotope of carbon. Then they looked for two types of "milk-mustache evidence" proving that the naphthalene was being processed by microorganisms. Part of this evidence was that the bacteria in the sediment produced carbon dioxide (CO2) labeled with carbon-13. In addition, the same bacteria incorporated carbon-13 into their nucleic acids. After extraction of nucleic acids from the sediment, DNA testing revealed a signature DNA sequence for the bacteria responsible for biodegrading the naphthalene. Subsequently, the researchers were able to isolate from the sediment and grow a previously unknown naphthalene-degrading bacterium with a matching DNA signature. The microbiologists then grew the bacterium, dubbed CJ2, and added it to the coal tar sediment samples, where the microorganism accelerated the loss of naphthalene.

The harnessing of CJ2 is related to the 1997 discovery by Cornell microbiologists of a bacterium (Dehalococcoides ethenogenes ) that biodegrades the industrial cleaning compound trichlorethylene (TCE). Billions of D. ethenogenes microbes are now at work at a New Jersey Superfund site and other TCE-polluted locations.

"D. ethenogenes was discovered, almost accidentally, before we had the advantage of stable isotopic probing," Madsen observes, "Finding the bugs actually responsible for biodegradation processes among the millions of known and unknown species out there is always difficult, but we've shown that SIP makes the search a little easier." The SIP strategy had been tested before in the laboratory and in agricultural plots but never before in a genuine contaminated field site.

Other authors of the PNAS article, "Discovery of a novel bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment," include: Che Ok Jeon, currently a research scientist at the Korea Research Institute of Bioscience and Biotechnology; Woojun Park and Christopher DeRito, Cornell graduate students; P. Padmanabhan, research scientist at the National Environmental Engineering Research Institute, India; and J.R. Snape, senior microbiologist, AstraZeneca, England.

The research was conducted with cooperation from Niagara Mohawk Power Corp. and the New York State Department of Environmental Conservation.


Story Source:

The above story is based on materials provided by Cornell University News Service. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University News Service. "Cornell Researchers' Probe Discovers Pollutant-eating Microbe And A Strategy To Speed Cleanup Of Old Gasworks." ScienceDaily. ScienceDaily, 28 October 2003. <www.sciencedaily.com/releases/2003/10/031028055516.htm>.
Cornell University News Service. (2003, October 28). Cornell Researchers' Probe Discovers Pollutant-eating Microbe And A Strategy To Speed Cleanup Of Old Gasworks. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2003/10/031028055516.htm
Cornell University News Service. "Cornell Researchers' Probe Discovers Pollutant-eating Microbe And A Strategy To Speed Cleanup Of Old Gasworks." ScienceDaily. www.sciencedaily.com/releases/2003/10/031028055516.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins