Featured Research

from universities, journals, and other organizations

Less Is More: New Technology Captures Gene-rich DNA Segments

Date:
December 23, 2003
Source:
Cold Spring Harbor Laboratory
Summary:
Obtaining genome sequence information frequently leads to breakthroughs in the study of a particular organism. Bringing agriculturally important plant species into the genomic age is therefore an important goal.

Obtaining genome sequence information frequently leads to breakthroughs in the study of a particular organism. Bringing agriculturally important plant species into the genomic age is therefore an important goal. However, because they are typically larger or much larger than the 3-billion letter human DNA sequence and have a high proportion of so-called repetitive DNA that is difficult to sequence and contains few coding regions or genes, the genomes of many plants--including most agriculturally important species--have posed significant challenges to researchers interested in crop improvement, plant molecular biology, or genome evolution. A new study by Cold Spring Harbor Laboratory researchers is a significant step toward overcoming those challenges.

By applying a method they recently developed that captures gene-rich regions and excludes the vast majority of repetitive, gene-poor DNA, Cold Spring Harbor researchers have now achieved a dramatic shortcut to sequencing the genes of corn. The approach should provide a similar boost to the sequencing and comparative analysis of other genomes in a wide variety of biological, biomedical, and biotechnological settings.

The study, led by Cold Spring Harbor Laboratory scientists W. Richard McCombie and Robert Martienssen, is published in the December 19 issue of Science along with a related study carried out by researchers at The Institute for Genomic Research in Rockville, Maryland. A key method used in both studies, called methylation filtration, was developed in 1999 by McCombie and Martienssen's groups through work funded by the U.S. Department of Agriculture.

Methylation filtration relies on the observation that the DNA of repetitive, gene-poor regions in the corn genome (and other plant genomes) is modified by a process called methylation, whose study has been pioneered in part by Martienssen's group. Methylation filtration takes advantage of this observation to preferentially capture the unmethylated, gene-rich regions of the corn genome for subsequent analysis. Indeed, the new study demonstrates that methylation filtration removes 93% of repetitive, gene-poor DNA. As a result, the researchers were able to focus their efforts on the sequencing and analysis of the gene-rich regions of the corn genome.

"This study establishes that methylation filtration, combined with other simple techniques, can be used to successfully recover and properly assemble complete gene sequences from genomes that are otherwise extraordinarily difficult to decipher," says McCombie. "Moreover, both studies involved large-scale tests that validated our initial estimates regarding how well the procedure would work. Perhaps most importantly, we've shown that after gene-enriched draft DNA sequences are obtained, they can be converted into the complete sequence of the corn genes by using the related, but much smaller rice genome sequence as a guide. We believe that taking this short-cut approach has brought us a very close to a final sequence map of the biologically important regions of the corn genome at a fraction of the cost of other approaches," adds McCombie.

The rice genome, which is about 1/6 the size of the corn genome, is being sequenced as part of an international consortium funded in the United States by the National Science Foundation and the U.S. Department of Agriculture. Corn is the most important agricultural crop in the U.S. Because the genome structures of wheat, oats, barley, and many other crops are quite similar to that of corn, the approaches outlined by the new study provide the means to bring investigations of all of these important crops into the genomics era.

###

The study was funded by the National Science Foundation Plant Genome Research Program (http://www.nsf.gov/bio/dbi/dbi_pgr.htm). Dr. Jane Silverthorne, Director of NSF's Plant Genome Research Program, says, "The success of this project highlights the importance of virtual center projects in bringing together the expertise required to tackle large complex problems in genomics."


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Less Is More: New Technology Captures Gene-rich DNA Segments." ScienceDaily. ScienceDaily, 23 December 2003. <www.sciencedaily.com/releases/2003/12/031219073238.htm>.
Cold Spring Harbor Laboratory. (2003, December 23). Less Is More: New Technology Captures Gene-rich DNA Segments. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2003/12/031219073238.htm
Cold Spring Harbor Laboratory. "Less Is More: New Technology Captures Gene-rich DNA Segments." ScienceDaily. www.sciencedaily.com/releases/2003/12/031219073238.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins