Featured Research

from universities, journals, and other organizations

Study In Worms Shows How Genes Linked To Complexity In Animals

Date:
February 19, 2004
Source:
Ohio State University
Summary:
The evolution of a particular gene could be the reason why a certain worm might better tolerate a salty environment than its relatives, new research suggests.

COLUMBUS, Ohio – The evolution of a particular gene could be the reason why a certain worm might better tolerate a salty environment than its relatives, new research suggests.

Related Articles


The findings show that the excretory cells of the worm Caenorhabditis elegans – a widely studied nematode used in genetics research -- express a specific gene that seems to help the species tolerate a high-salt environment. The findings are reported in the current online edition of Nature Genetics.

Related Caenorhabditis species also have this gene – lin-48 – but these worms don't express it like C. elegans does. As a result, the other worms died when exposed to the same levels of salt.

Somewhere along the evolutionary pathway, C. elegans developed the ability to survive in salty environments, said Helen Chamberlin, a study co-author and an assistant professor of molecular genetics at Ohio State. Lin-48 expression gives C. elegans some key advantages over its relatives; for one, there's less competition for living space.

"But no one has collected C. elegans strictly from a salty environment to see if indeed these worms thrive there to the exclusion of other Caenorhabditis species," Chamberlin said. "Quite frankly, the ecology of these worms' isn't well studied."

Learning how C. elegans differs genetically from its relatives could give researchers insight into how organ systems in more complex animals evolved. One example could be the human kidney.

"Changes in gene function are at the heart of evolutionary complexity," Chamberlin said. "The expression of lin-48 in its excretory cells adds a layer of complexity to C. elegans."

Chamberlin conducted the study with Xiaodong Wang, a postdoctoral researcher in molecular genetics at Ohio State.

They compared how several species of Caenorhabditis worms regulated salt intake. C. elegans and its relatives are tiny, non-parasitic worms that grow to be about 1 millimeter long and thrive in rotting vegetation and other detritus.

While all of the worms studied had the lin-48 gene, C. elegans was the only species to express the gene in its excretory cells. The researchers looked at the excretory cells because that's where they could easily see the differences in lin-48 expression.

In laboratory petri dishes, the worms were exposed to high levels of sodium chloride – regular table salt.

The expression of lin-48 in the excretory cells appeared to give C. elegans a survival advantage over its relatives, as the other species were unable to process the excess salt, and more than three-quarters died as a result.

"Having lin-48 in the excretory cell changes the cell, but we're not sure how," Chamberlin said. "Lin-48 itself is a transcription factor – it turns on other genes that theoretically help C. elegans handle excessive levels of salt. But we don't know what other genes it affects.

"Differences in gene expression contribute to structural and functional differences between species," she said. "In this case, C. elegans' excretory system can handle excessive levels of salt, which may give the worms an additional benefit of living in naturally salty environments where other worms can't survive."

The researchers concluded that C. elegans is more highly evolved than similar worm species because it developed a change in gene expression over time.

"This change made C. elegans more complex," Chamberlin said. "If we can understand how gene regulation becomes more complicated, it might tell us how organisms became increasingly complex."


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Study In Worms Shows How Genes Linked To Complexity In Animals." ScienceDaily. ScienceDaily, 19 February 2004. <www.sciencedaily.com/releases/2004/02/040219075849.htm>.
Ohio State University. (2004, February 19). Study In Worms Shows How Genes Linked To Complexity In Animals. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2004/02/040219075849.htm
Ohio State University. "Study In Worms Shows How Genes Linked To Complexity In Animals." ScienceDaily. www.sciencedaily.com/releases/2004/02/040219075849.htm (accessed October 26, 2014).

Share This



More Plants & Animals News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins