Featured Research

from universities, journals, and other organizations

For The Sake Of Land And Climate, Coaxing Soil To Soak Up Carbon

Date:
April 2, 2004
Source:
Pacific Northwest National Laboratory
Summary:
In a novel approach to stalling global warming while reinvigorating nutrient-depleted farmland, chemists have found they can promote soil's natural ability to soak up greenhouse-gas carbon dioxide from the surrounding air.

ANAHEIM, Calif. -- In a novel approach to stalling global warming while reinvigorating nutrient-depleted farmland, chemists have found they can promote soil's natural ability to soak up greenhouse-gas carbon dioxide from the surrounding air.

Experiments led by Jim Amonette at the Department of Energy's Pacific Northwest National Laboratory in Richland, Wash., and reported today at the American Chemical Society national meeting, show that maintaining a proper alkalinity plus frequent wetting and drying cycles can coax soil to retain more carbon.

"Globally, soils contain four times as much carbon as the atmosphere, and half of the soil carbon is in the form of organic matter," said Amonette, a PNNL senior research scientist. Until about 30 years ago, soil tillage released more carbon dioxide to the atmosphere than burning of fossil fuels. Some agricultural soils have lost a third of their carbon from tillage.

"These carbon-depleted soils are a tremendous potential reservoir for carbon that can help slow the increase in atmospheric carbon dioxide," Amonette said. "The amount of carbon added to soil in a year is incredible. Today, 99 percent of it comes out the top as carbon dioxide. If we can increase the fraction that is retained in soil by even a small amount, it will make a huge difference."

Amonette's experiments promoted the activity of tyrosinase, a common enzyme that catalyzes soil's natural "humification" process. This process involves the gradual incorporation of carbon from dead plants and microbes into stable organic matter called humus, which is responsible for the dark color in many soils. Tyrosinase increases the reaction rate between oxygen and humus precursors, such as phenols and hydroxybenzoic acids, to form quinones. The quinones react with amino acids released by soil microbes to form complex, durable molecules called humic polymers.

"Because humic polymers are less easily degraded by microbes than the precursor molecules, they survive to diffuse into small pores in soil aggregates where they are stabilized for decades, if not centuries," Amonette said.

The humification rate depends on many factors: enzyme stability, moisture, alkalinity, oxygen availability, microbial population and the physical properties of different soils. Amonette's experiments were designed to weigh the importance of these many factors and to learn ways they might be manipulated to increase humification.

In the lab, Amonette assembled 72 elaborate plastic-tube configurations he likens to "those Russian nesting dolls," matrioshkas. The tubes allowed Amonette to control individual moisture levels and oxygen availability. Each soil sample was placed between the inner and outer walls of water-tight but gas-porous concentric cylinders. These were placed inside yet a larger "chimney" tube to control the humidity as well as the type of gas and its flow rate.

Amonette was particularly interested in identifying soil components and soil additives that might improve tyrosinase's natural ability to promote humification. He found that an alkaline, porous material called "fly ash," a byproduct of coal combustion, "speeds up the normal humification process by promoting the reaction of the quinones with the amino acids and providing small pores to protect humic polymers," he said. "Frequent cycles of wetting and drying appear to be important, too, for fostering a rich microbial community that supplies many of the humic precursors and for aiding the formation of soil aggregates."

Amonette is eager to put his results to the test where it matters most--in the field. He will get his wish in May, when he travels to a field outside of Charleston, S.C. There, he and collaborators from the U.S. Forest Service and Oak Ridge National Laboratory will plant 72 pots containing various controlled mixtures of soil and catalysts.

###

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.


Story Source:

The above story is based on materials provided by Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Pacific Northwest National Laboratory. "For The Sake Of Land And Climate, Coaxing Soil To Soak Up Carbon." ScienceDaily. ScienceDaily, 2 April 2004. <www.sciencedaily.com/releases/2004/04/040402073631.htm>.
Pacific Northwest National Laboratory. (2004, April 2). For The Sake Of Land And Climate, Coaxing Soil To Soak Up Carbon. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2004/04/040402073631.htm
Pacific Northwest National Laboratory. "For The Sake Of Land And Climate, Coaxing Soil To Soak Up Carbon." ScienceDaily. www.sciencedaily.com/releases/2004/04/040402073631.htm (accessed September 18, 2014).

Share This



More Earth & Climate News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins