Featured Research

from universities, journals, and other organizations

Decoding A Sulfate-breathing Bug

Date:
April 14, 2004
Source:
The Institute For Genomic Research
Summary:
Paving the way for better methods to protect pipelines and remediate metallic pollutants, scientists have sequenced the genome of a sulfate-breathing bacterium that can damage oil and natural gas pipelines and corrode oilfield equipment.

Rockville, MD – Paving the way for better methods to protect pipelines and remediate metallic pollutants, scientists have sequenced the genome of a sulfate-breathing bacterium that can damage oil and natural gas pipelines and corrode oilfield equipment.

The microbe, Desulfovibrio vulgaris, plays a role in a process called microbially-influenced corrosion (MIC), which has caused staggering economic losses in the petroleum industry and at other industrial sites around the world. Such corrosion is caused by bacteria acting together in a biofilm that covers metal pipelines or equipment.

The analysis of the microbe's genes is expected to help researchers find better ways to minimize such damage as well as to develop methods to use such microbes to help remediate metallic pollutants such as uranium and chromium.

Desulfovibrio is a model for the study of sulfate-reducing bacteria, which use hydrogen, organic acid, or alcohols as electron donors to "reduce" (that is, add electrons to) certain metals, including uranium. Other sequenced microbes that are capable of such reduction include Shewanella oneidensis and Geobacter sulfurreducens, both of which were sequenced at TIGR.

"This genome will be a valuable asset to the community of scientists around the world who are studying the sulfate-reducing bacteria and their role in corrosion," says John Heidelberg, the TIGR assistant investigator who led the sequencing project.

The study, to be published in the May 2004 issue of Nature Biotechnology and posted on the journal's website this week, was supported by the Microbial Genome Program of the U.S. Department of Energy's Office of Science.

In their analysis of the D. vulgaris genome, scientists found a network of c-type cytochromes – proteins which facilitate electron transfers and metal reduction during the organism's energy metabolism. The presence of those c-type cytochrome genes are thought to give D. vulgaris a significant capacity and flexibility to reduce metals.

The study also found that the relative arrangements of genes involved in energy transfer provides evidence that the microbe uses a process called hydrogen cycling to increase the efficiency of its energy metabolism.

"With the genome sequence, we have a frame in which our theories and data must function. We have yet to see the frame very clearly, but that is developing," says Judy D. Wall, a biochemist at the University of Missouri-Columbia who collaborated on the genome analysis.

Wall says that having the genome of D. vulgaris will help biochemists determine exactly how the microbe corrodes iron and perhaps develop better ways to prevent that damage. "Understanding how sulfate-reducing bacteria use substrates to make energy and how they position themselves in the environment …is fundamental to efforts to control the bacteria or use them for our purposes," she says. Gerrit Voordouw, a microbiologist at the University of Calgary in Canada and a collaborator on the project, is an expert on the organism. "Knowing the genomic sequence will allow detailed unraveling of the mechanism by which sulfate-reducing bacteria like D. vulgaris use metallic iron as electron donors," he says.

Voordouw adds that future microarray studies of D. vulgaris will make it possible to determine which of its genes are turned on or off when the microbe is growing on a metal surface and is involved in the corrosion process. "This knowledge is a prerequisite to devising more intelligent ways to prevent microbially induced corrosion."

In addition, the genome sequence – by defining genes of interest in the process of metal ion reduction and metal ion precipitation – is expected to help scientists find ways to use D. vulgaris or similar sulfate-reducing microbes to help clean up pollution by toxic metals near mines or similar sites.

Says Voordouw: "This is important to help combat the spread of toxic metal ions in the environment at mining sites."

###

The Institute for Genomic Research (TIGR) is a not-for-profit research institute based in Rockville, Maryland. TIGR, which sequenced the first complete genome of a free-living organism in 1995, has been at the forefront of the genomic revolution since the institute was founded in 1992. TIGR conducts research involving the structural, functional, and comparative analysis of genomes and gene products in viruses, bacteria, archaea, and eukaryotes.


Story Source:

The above story is based on materials provided by The Institute For Genomic Research. Note: Materials may be edited for content and length.


Cite This Page:

The Institute For Genomic Research. "Decoding A Sulfate-breathing Bug." ScienceDaily. ScienceDaily, 14 April 2004. <www.sciencedaily.com/releases/2004/04/040414004505.htm>.
The Institute For Genomic Research. (2004, April 14). Decoding A Sulfate-breathing Bug. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2004/04/040414004505.htm
The Institute For Genomic Research. "Decoding A Sulfate-breathing Bug." ScienceDaily. www.sciencedaily.com/releases/2004/04/040414004505.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins