Featured Research

from universities, journals, and other organizations

Mimicking Humpback Whale Flippers May Improve Airplane Wing Design

Date:
May 13, 2004
Source:
Duke University
Summary:
Wind tunnel tests of scale-model humpback whale flippers have revealed that the scalloped, bumpy flipper is a more efficient wing design than is currently used by the aeronautics industry on airplanes. The tests show that bump-ridged flippers do not stall as quickly and produce more lift and less drag than comparably sized sleek flippers.

DURHAM, N.C. -- Wind tunnel tests of scale-model humpback whale flippers have revealed that the scalloped, bumpy flipper is a more efficient wing design than is currently used by the aeronautics industry on airplanes. The tests show that bump-ridged flippers do not stall as quickly and produce more lift and less drag than comparably sized sleek flippers.

Related Articles


The tests were reported by biomechanicist Frank Fish of West Chester University, Penn., fluid dynamics engineer Laurens Howle of the Pratt School of Engineering at Duke University and David Miklosovic and Mark Murray at the U.S. Naval Academy. They reported their findings in the May 2004 issue of Physics of Fluids , published in advance online on March 15, 2004.

In their study, the team first created two approximately 22-inch-tall scale models of humpback pectoral flippers -- one with the characteristic bumps, called tubercles, and one without. The models were machined from thick, clear polycarbonate at Duke University. Testing was conducted in a low speed closed-circuit wind tunnel at the U.S. Naval Academy in Annapolis, Md.

The sleek flipper performance was similar to a typical airplane wing. But the tubercle flipper exhibited nearly 8 percent better lift properties, and withstood stall at a 40 percent steeper wind angle. The team was particularly surprised to discover that the flipper with tubercles produced as much as 32 percent lower drag than the sleek flipper.

"The simultaneous achievement of increased lift and reduced drag results in an increase in aerodynamic efficiency," Howle explains.

This new understanding of humpback whale flipper aerodynamics has implications for airplane wing and underwater vehicle design. Increased lift (the upward force on an airplane wing) at higher wind angles affects how easily airplanes take off, and helps pilots slow down during landing.

Improved resistance to stall would add a new margin of safety to aircraft flight and also make planes more maneuverable. Drag -- the rearward force on an airplane wing -- affects how much fuel the airplane must consume during flight. Stall occurs when the air no longer flows smoothly over the top of the wing but separates from the top of the wing before reaching the trailing edge. When an airplane wing stalls, it dramatically loses lift while incurring an increase in drag.

As whales move through the water, the tubercles disrupt the line of pressure against the leading edge of the flippers. The row of tubercles sheers the flow of water and redirects it into the scalloped valley between each tubercle, causing swirling vortices that roll up and over the flipper to actually enhance lift properties.

"The swirling vortices inject momentum into the flow," said Howle. "This injection of momentum keeps the flow attached to the upper surface of the wing and delays stall to higher wind angles."

"This discovery has potential applications not only to airplane wings but also on the tips of helicopter rotors, airplane propellers and ship rudders," said Howle.

The purpose of the tubercles on the leading edge of humpback whale flippers has been the source of speculation for some time, said Fish. "The idea they improved flipper aerodynamics was so counter to our current doctrine of fluid dynamics, no one had ever analyzed them," he said.

Humpback whales maneuver in the water with surprising agility for 44-foot animals, particularly when they are hunting for food. By exhaling air underwater as they turn in a circle, the whales create a cylindrical wall of bubbles that herd small fish inside. Then they barrel up through the middle of the "bubble net," mouth open wide, to scoop up their prey.

According to Fish, the scalloped hammerhead shark is the only other marine animal with a similar aerodynamic design. The expanded hammerhead shark head may act like a wing.

The trick now is to figure out how to incorporate the advantage of the tubercle flipper into manmade designs, said Fish.

The research team now plans to perform a systematic engineering investigation of the role of scalloped leading edges on lift increase, drag reduction and stall delay.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Mimicking Humpback Whale Flippers May Improve Airplane Wing Design." ScienceDaily. ScienceDaily, 13 May 2004. <www.sciencedaily.com/releases/2004/05/040512044455.htm>.
Duke University. (2004, May 13). Mimicking Humpback Whale Flippers May Improve Airplane Wing Design. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2004/05/040512044455.htm
Duke University. "Mimicking Humpback Whale Flippers May Improve Airplane Wing Design." ScienceDaily. www.sciencedaily.com/releases/2004/05/040512044455.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins