Featured Research

from universities, journals, and other organizations

UNC Scientists Uncover Crucial Mechanism For Blood Vessel Development

Date:
June 16, 2004
Source:
University Of North Carolina School Of Medicine
Summary:
New research at the University of North Carolina at Chapel Hill provides insights into the fundamental mechanisms controlling blood vessel formation and may have implications for therapies such as non-surgical restoration of circulation.

Time-lapse images (in minutes) of blood vessel sprout formation.
Credit: Image courtesy University Of North Carolina School Of Medicine

CHAPEL HILL -- New research at the University of North Carolina at Chapel Hill provides insights into the fundamental mechanisms controlling blood vessel formation and may have implications for therapies such as non-surgical restoration of circulation.

Related Articles


The study findings appear in the June 15 issue of the journal Blood.

Blood vessel formation, or angiogenesis, is an integral part of normal organ development and function. It also contributes to abnormal conditions, particularly tumor formation and growth.

Angiogenesis begins with the establishment of an intricately branched rudimentary network called the vascular plexus, which is assembled from blood vessel precursor cells. This is followed by increased cell division of specific cells, endothelial cells that make up the lining of blood vessels.

These cells then sprout and migrate away from the parent vessel, and the sprouts ultimately connect with each other, allowing the vessel network to expand. This process is called sprouting angiogenesis.

"It is very important to understand the sprouting process, because it occurs any time there is angiogenesis, whether for helpful reasons, such as wound healing, or in the context of pathology, such as cancer," said Dr. Victoria L. Bautch, who is a member of the School of Medicine's Carolina Cardiovascular Biology Center and a professor of biology at the university. Angiogenesis is coordinated by the actions of a number of proteins, and one of the most critical regulators of this process is the protein Vascular Endothelial Growth Factor-A, or VEGFA, said Bautch. Sprouting angiogenesis occurs as a result of the interactions of VEGFA with two cell receptor molecules, VEGFR1 (also called flt-1) and VEGFR2 (also called flk-1), she added.

While flk-1 is thought to promote endothelial cell division, the exact functions of flt-1 are poorly understood and have been difficult to uncover until now, said Bautch.

Research by Bautch's group reveals for the first time that flt-1 positively controls sprouting by regulating endothelial cell migration.

UNC co-authors postdoctoral researcher Joseph Kearney and graduate student Nicholas Kappas measured the efficiency of vessel formation using mouse embryonic stem cells genetically engineered to lack the flt-1 gene and then induced to become endothelial cells.

Mutant and normal embryonic stem cells were additionally engineered to express the green fluorescent protein. This "marker" allows fluorescence microscopy to visualize living cells.

The experiment enabled the researchers to analyze the dynamics of vessel formation in real time by performing time-lapse imaging of live endothelial cells. Using this method they demonstrated that blood vessels made from cells lacking the flt gene are defective in sprouting and that these sprouts migrate less quickly. These findings may have implications for future therapies.

"For instance, coronary heart disease, which is commonly treated by bypass surgery, requires reconstruction of blood vessels using veins from other parts of the body," said Bautch. "Diabetes is another pathological condition associated with loss of circulation in the limbs and extremities."

The goal of angiogenic therapy in these situations is to restore circulation non-surgically.

"There have been attempts to induce blood vessel formation by manipulating the VEGF molecular pathway. Most of the time you don't get functional vessels, but a set of dilated vessels that haven't made the right connections," said Bautch.

"We, along with others, are now beginning to unravel the complexity of this pathway. We think the flt-1 receptor actually regulates the amount of VEGFA required for proper vessel formation. So having the right amount of VEGF at the right spot and in the right context is critical," she added. Department of biology co-authors, along with Bautch, Kearney and Kappas, were Catharina Ellerstrom and Frank DiPaola.

This study was supported by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of North Carolina School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina School Of Medicine. "UNC Scientists Uncover Crucial Mechanism For Blood Vessel Development." ScienceDaily. ScienceDaily, 16 June 2004. <www.sciencedaily.com/releases/2004/06/040616064347.htm>.
University Of North Carolina School Of Medicine. (2004, June 16). UNC Scientists Uncover Crucial Mechanism For Blood Vessel Development. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2004/06/040616064347.htm
University Of North Carolina School Of Medicine. "UNC Scientists Uncover Crucial Mechanism For Blood Vessel Development." ScienceDaily. www.sciencedaily.com/releases/2004/06/040616064347.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins