Featured Research

from universities, journals, and other organizations

Gene Duplication Allowed Pigs To Have More Babies

Date:
August 18, 2004
Source:
BioMed Central
Summary:
Researchers have used a diverse array of disciplines to investigate why the pig, Sus scrofa, has three different genes that encode the enzyme aromatase – an enzyme that catalyses the transformation of androgens, such as testosterone, into estrogens - whereas other hooved animals have only one.

With increasing numbers of whole genomes being sequenced, researchers are keen to analyse the functions of the genes they contain and the proteins these genes encode. Yet, according to researchers writing in BMC Biology, to fully understand any genome, researchers must use palaeontology, geology and chemistry to help them discover the reasons why specific genes evolved.

Related Articles


Steven Benner and Eric Gaucher at the Foundation for Applied Molecular Evolution, Frank and Rosalie Simmen at the University of Arkansas, and their colleagues from the United States and Norway carried out the study. They used a diverse array of disciplines to investigate why the pig, Sus scrofa, has three different genes that encode the enzyme aromatase – an enzyme that catalyses the transformation of androgens, such as testosterone, into estrogens - whereas other hooved animals have only one.

The evidence that they collected suggests that the additional aromatase genes arose as a result of natural selection for pigs with larger litters than their ancestors. These larger litters may well have helped the animals to survive the dramatic cooling of the earth that started during the Oligocene period, around 35 million years ago.

Their investigations drew on the geological and palaeontological records, and used techniques from evolutionary biology, structural biology, chemistry and genetics. "As the geological, palaeontological and genomic records improve," write the authors, "our combined approach should become widely useful to make systems biology statements about high-level function for biomolecular systems. […] Over the long term, we expect that the histories of the geosphere, the biosphere and the genosphere will converge to give a coherent picture showing the relationship between life and the planet that supports it."

The researchers used genetic information to estimate that the ancestral aromatase gene duplicated twice, to give three genes, between 27 and 38 million years ago. By analysing the genetic sequence from two living relatives of Sus scrofa, peccary and babirusa, the researchers were able to narrow this time period further. As both these relatives have two genes encoding aromatases, one more than most hooved animals, the first gene duplication is likely to have occurred in the common ancestor of the three animals, around 35 million years ago. This coincides with the climate changes that started in the Oligocene.

By consulting the palaeontological record, which contains fossils of pregnant animals, the researchers found that the increase in the number of aromatase genes coincided with the emergence of larger litter sizes. Ancestral hooved animals produced between one and two offspring at a time, whereas peccaries produce at least two offspring, and the true pigs, such as Sus scrofa, routinely have between three and four young. This evidence suggested that the new aromatase genes could have played a role in altering the reproductive behaviour of the animals.

By studying the structure of the different enzymes encoded by the three genes, Dr Benner and his colleagues found small differences in the amino acid sequences within the protein's substrate-binding and active sites. This suggests that the three enzymes bind to different molecules, so each aids the formation of different products. It is the evolution of these different catalytic activities that might have caused changes in the pig's reproductive biology.

Obviously, the evolution of the aromatase genes is likely to be only a small part of the changes in reproductive endocrinology that enabled these animals to make the transition from small to large litter sizes. However, the multi-disciplinary analysis does go some way towards explaining why natural selection would have favoured pigs with multiple aromatase genes.

Dr Benner writes: "Natural history offers biological chemists the opportunity to place broad biological meaning on the detailed analysis of the changing structure of isolated biological molecules, studied in a reductionist setting. To do so, however, natural history must be connected to the physical and molecular sciences, both in subject matter and in culture."

###This press release is based on the following article:

The planetary biology of cytochrome P450 aromatases

Eric A Gaucher, Logan G Graddy, Tang Li, Rosalia CM Simmen, Frank A Simmen, David R Schreiber, David A Liberles, Christine M Janis and Steven A BennerBMC Biology 2004, 2:18To be published Tuesday 17 August, 2004

Upon publication this article will be freely available according to BMC Biology's Open Access policy via: http://www.biomedcentral.com/1741-7007/2/18

###

BMC Biology (http://www.biomedcentral.com/bmcbiol/) publishes original research articles and methodology articles in any area of biology but with a focus on the biomedical sciences. To be appropriate for BMC Biology, articles need to be of special importance and broad interest.

BMC Biology is published by BioMed Central (http://www.biomedcentral.com), an independent online publishing house committed to providing Open Access to peer-reviewed biological and medical research. This commitment is based on the view that immediate free access to research and the ability to freely archive and reuse published information is essential to the rapid and efficient communication of science. BioMed Central currently publishes over 100 journals across biology and medicine. In addition to open-access original research, BioMed Central also publishes reviews, commentaries and other non-original-research content. Depending on the policies of the individual journal, this content may be open access or provided only to subscribers.


Story Source:

The above story is based on materials provided by BioMed Central. Note: Materials may be edited for content and length.


Cite This Page:

BioMed Central. "Gene Duplication Allowed Pigs To Have More Babies." ScienceDaily. ScienceDaily, 18 August 2004. <www.sciencedaily.com/releases/2004/08/040817080907.htm>.
BioMed Central. (2004, August 18). Gene Duplication Allowed Pigs To Have More Babies. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2004/08/040817080907.htm
BioMed Central. "Gene Duplication Allowed Pigs To Have More Babies." ScienceDaily. www.sciencedaily.com/releases/2004/08/040817080907.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins