Featured Research

from universities, journals, and other organizations

Typhoid Fever Genomes To Help Scientists Seek Better Vaccines

Date:
December 27, 2004
Source:
Washington University School Of Medicine In St. Louis
Summary:
Every year in developing nations, typhoid fever infects more than 16 million people and kills more than half a million. Researchers hoping to reduce this heavy toll have an important new tool: completed genomes for the two bacteria that are the leading causes of typhoid fever.

Salmonella enterica.
Credit: Photo courtesy of Michael McClelland, Sydney Kimmel Cancer Center of San Diego

Dec. 9, 2004 — Every year in developing nations, typhoid fever infects more than 16 million people and kills more than half a million. Researchers hoping to reduce this heavy toll have an important new tool: completed genomes for the two bacteria that are the leading causes of typhoid fever. Scientists at the Genome Sequencing Center (GSC) at Washington University School of Medicine in St. Louis hope the results will hasten the development of new vaccines that can exploit similarities between the strains.

Three years ago, scientists sequenced the genome of the Salmonella bacterium most familiar to Americans because of its role in food poisoning, Salmonella Typhimurium (Salmonella enterica var Typhimurium).

Unlike that bacterium, Typhi and Paratyphi A can spread beyond the gut to cause systemic infections. The bacteria cause problems mainly in developing nations, where they spread through consumption of contaminated food and water.

"Because of our hygiene and the availability of antibiotics, these bacteria aren't a big problem here. But they are significant sources of mortality in other nations, particularly in children and the elderly," says Sandra Clifton, Ph.D., research assistant professor in genetics at the GSC. "Learning what the commonalities and the differences are between these two strains will help us seek a vaccine that works against both."

Clifton was a contributor to the projects that sequenced the genomes of Typhimurium and Paratyphi A. The Paratyphi A project published its results and a Typhi-Paratyphi A comparison in the November 7 issue of Nature Genetics.

The Paratyphi A sequencing project was led by Richard Wilson, Ph.D., director of the GSC and professor of genetics. Other institutions involved were the Sidney Kimmel Cancer Center of San Diego and the University of Calgary.

Typhimurium bacteria can inhabit mice, humans, and other organisms, but Typhi and Paratyphi A have been found only in humans. This exclusivity may make it possible for scientists to eradicate the disease, a feat they accomplished once before with the smallpox virus and hope to repeat soon with polio virus.

Based on their analysis of the Typhi and Paratyphi A genomes, researchers think Typhi, whose genome was sequenced by the Wellcome Trust Sanger Institute, branched off from a bacterial ancestor anywhere from 15,000 to 150,000 years ago.

"That's a mere second in evolutionary time, and Paratyphi A appears to have developed even later than that," Clifton notes. "So it's going to be very interesting to study how these bacteria have rapidly adapted to the human niche."

Signs that both organisms were evolving on the same but slightly divergent tracks included the number of pseudogenes, or genes still encoded in the bacteria's DNA but no longer used to make proteins. Both bacteria have similarly large numbers of pseudogenes—Typhi has about 200, and Paratyphi A has approximately 170.

Although similar in quantity, the pseudogenes were different in content.

"We only found about 30 similar pseudogenes between the two genomes," Clifton notes. "Although the individual genes were different, in many instances the bacteria had turned off different genes involved in the same biochemical processes. That tells us that these bacteria are probably evolving along partly overlapping but very distinct genotypic pathways."

Clifton and others found the similarities encouraging. They hope further analysis of the genomes will lead to the identification of common genetic elements that can be exploited for creation of vaccines effective against both bacteria.

###

McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M, Harkins CR, Wang C, Nguyen C, Berghoff A, Elliott G, Kohlberg S, Strong C, Du F, Carter J, Kremizki C, Layman D, Leonard S, Sun H, Fulton L, Nash W, Miner T, Minx P, Delehaunty K, Fronick C, Magrini V, Warren W, Florea L, Spieth J, Nhan M, Wilson RK. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica causing typhoid. Nature Genetics, November 7, 2004.

Funding from the National Institute of Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine In St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine In St. Louis. "Typhoid Fever Genomes To Help Scientists Seek Better Vaccines." ScienceDaily. ScienceDaily, 27 December 2004. <www.sciencedaily.com/releases/2004/12/041220033026.htm>.
Washington University School Of Medicine In St. Louis. (2004, December 27). Typhoid Fever Genomes To Help Scientists Seek Better Vaccines. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2004/12/041220033026.htm
Washington University School Of Medicine In St. Louis. "Typhoid Fever Genomes To Help Scientists Seek Better Vaccines." ScienceDaily. www.sciencedaily.com/releases/2004/12/041220033026.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins