Featured Research

from universities, journals, and other organizations

Typhoid Fever Genomes To Help Scientists Seek Better Vaccines

Date:
December 27, 2004
Source:
Washington University School Of Medicine In St. Louis
Summary:
Every year in developing nations, typhoid fever infects more than 16 million people and kills more than half a million. Researchers hoping to reduce this heavy toll have an important new tool: completed genomes for the two bacteria that are the leading causes of typhoid fever.

Salmonella enterica.
Credit: Photo courtesy of Michael McClelland, Sydney Kimmel Cancer Center of San Diego

Dec. 9, 2004 — Every year in developing nations, typhoid fever infects more than 16 million people and kills more than half a million. Researchers hoping to reduce this heavy toll have an important new tool: completed genomes for the two bacteria that are the leading causes of typhoid fever. Scientists at the Genome Sequencing Center (GSC) at Washington University School of Medicine in St. Louis hope the results will hasten the development of new vaccines that can exploit similarities between the strains.

Related Articles


Three years ago, scientists sequenced the genome of the Salmonella bacterium most familiar to Americans because of its role in food poisoning, Salmonella Typhimurium (Salmonella enterica var Typhimurium).

Unlike that bacterium, Typhi and Paratyphi A can spread beyond the gut to cause systemic infections. The bacteria cause problems mainly in developing nations, where they spread through consumption of contaminated food and water.

"Because of our hygiene and the availability of antibiotics, these bacteria aren't a big problem here. But they are significant sources of mortality in other nations, particularly in children and the elderly," says Sandra Clifton, Ph.D., research assistant professor in genetics at the GSC. "Learning what the commonalities and the differences are between these two strains will help us seek a vaccine that works against both."

Clifton was a contributor to the projects that sequenced the genomes of Typhimurium and Paratyphi A. The Paratyphi A project published its results and a Typhi-Paratyphi A comparison in the November 7 issue of Nature Genetics.

The Paratyphi A sequencing project was led by Richard Wilson, Ph.D., director of the GSC and professor of genetics. Other institutions involved were the Sidney Kimmel Cancer Center of San Diego and the University of Calgary.

Typhimurium bacteria can inhabit mice, humans, and other organisms, but Typhi and Paratyphi A have been found only in humans. This exclusivity may make it possible for scientists to eradicate the disease, a feat they accomplished once before with the smallpox virus and hope to repeat soon with polio virus.

Based on their analysis of the Typhi and Paratyphi A genomes, researchers think Typhi, whose genome was sequenced by the Wellcome Trust Sanger Institute, branched off from a bacterial ancestor anywhere from 15,000 to 150,000 years ago.

"That's a mere second in evolutionary time, and Paratyphi A appears to have developed even later than that," Clifton notes. "So it's going to be very interesting to study how these bacteria have rapidly adapted to the human niche."

Signs that both organisms were evolving on the same but slightly divergent tracks included the number of pseudogenes, or genes still encoded in the bacteria's DNA but no longer used to make proteins. Both bacteria have similarly large numbers of pseudogenes—Typhi has about 200, and Paratyphi A has approximately 170.

Although similar in quantity, the pseudogenes were different in content.

"We only found about 30 similar pseudogenes between the two genomes," Clifton notes. "Although the individual genes were different, in many instances the bacteria had turned off different genes involved in the same biochemical processes. That tells us that these bacteria are probably evolving along partly overlapping but very distinct genotypic pathways."

Clifton and others found the similarities encouraging. They hope further analysis of the genomes will lead to the identification of common genetic elements that can be exploited for creation of vaccines effective against both bacteria.

###

McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M, Harkins CR, Wang C, Nguyen C, Berghoff A, Elliott G, Kohlberg S, Strong C, Du F, Carter J, Kremizki C, Layman D, Leonard S, Sun H, Fulton L, Nash W, Miner T, Minx P, Delehaunty K, Fronick C, Magrini V, Warren W, Florea L, Spieth J, Nhan M, Wilson RK. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica causing typhoid. Nature Genetics, November 7, 2004.

Funding from the National Institute of Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine In St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine In St. Louis. "Typhoid Fever Genomes To Help Scientists Seek Better Vaccines." ScienceDaily. ScienceDaily, 27 December 2004. <www.sciencedaily.com/releases/2004/12/041220033026.htm>.
Washington University School Of Medicine In St. Louis. (2004, December 27). Typhoid Fever Genomes To Help Scientists Seek Better Vaccines. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2004/12/041220033026.htm
Washington University School Of Medicine In St. Louis. "Typhoid Fever Genomes To Help Scientists Seek Better Vaccines." ScienceDaily. www.sciencedaily.com/releases/2004/12/041220033026.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins